Эл схема эл зажигания – Электронное зажигание | Все своими руками

Электронное зажигание | Все своими руками

Эта схема электронного зажигания пришла на смену контактному зажиганию. Схема
давно известная в интернете и показала себя в работе с самой лучшей стороны. Проверена
годами так сказать. Среди некоторых моих знакомых видел данное устройство в работе

Данное электронное зажигание несет кучу плюсов за собой:
— универсальность(ВАЗ,ГАЗ,УАЗ и т.д.)
— защита катушки зажигания
— качественная искра
— контакты больше не будут подгорать
— не нужен балластный резистор в цепи катушки

Давайте рассмотрим подробнее
— Во-первых, благодаря тонкой и не сложной настройке компонентов, схема работает
практическими со всеми катушками зажигания, что делает ее практически универсальной
для всех автомобилей с контактным зажигание
— Во-вторых, практически исключает порчу катушки при включенном зажигании, но
заглушенном двигателе
— В третьих электронное зажигание дает более качественную искру. При запуске двигателя
искра более мощная, что облегчает запуск. А в работе искра стабилизируется до
нормальной
— В четвертых не пригорают контакты зажигания на трамблере, потому что всю нагрузку

от катушки зажигания берет на себя транзистор
— В пятых не знаю на сколько достоверная информация, но слух есть что уменьшается
расход топлива благодаря хорошей искре. Сомнительное утверждение, но слышал не раз.
Поэтому к плюсам добавлю экономию на топливе

Схема электронного зажигания

Используемые компоненты
C1 = 4.7мФ
C2 = 0.047мФ
R1 = 390
R2,3 = 110к
R4,5 = 100
R6 = 20к нужен для стабилизации напряжения на катушке и подбирается под катушку индивидуально. Этот расчет для
катушки Б115
VD1 = 1N4148
VT1 = КТ973
VT2 = КТ898А рекомендуется ставить составные транзисторы для повышения надежности схемы

Работа электронного зажигания. Когда прерыватель замыкается и размыкается, импульс
проходит через конденсатор C1, открывая транзисторы. Когда транзистор VT2

закрывается, возникает искра сглаживающаяся конденсаторам C2.
Плата электронного зажигания

Как видите плата устанавливается поверх радиатора. Транзистор VT2 через термопасту и
диэлектрическую прокладку крепится на радиатор.
Спасибо за внимае. Жду Комментариев
С ув. Admin-чек

Поддержите новые проекты монеткой, пролистайте страницу чуть ниже, будьте любезны.

Загрузка…

Полезные материалы по этой теме:

rustaste.ru

Простая схема электронного зажигания — Схема-авто — поделки для авто своими руками

Общеизвестно, что воспламенение топлива в двигателях внутреннего сгорания происходит благодаря искре от свечи зажигания, напряжение которого может достигать 20 Кв (если свеча полностью исправна).

На некоторых двигателях, для полноценной его работы иногда необходима энергия значительно больше, чем могут дать 20 Кв. Для решения данной проблемы и создана специальная электронная система зажигания. В российских отечественных автомашинах применяются обычные системы зажигания. Но все они имеют очень большие минусы.

Когда авто стоит на холостом ходу, в прерывателе, а иемнно между контактами появляется дуговой разряд, который поглощает большую часть энергии. При достаточно больших оборотах вторичное напряжение на катушке уменьшается из-за дребезга этих контактов. В результате чего это приводит к плохой аккумуляции энергии для образования искры зажигания. Из-за чего значительно снижается КПД двигателя автомобиля, увеличивается объем CO2 в выхлопной системе, топливо практически полностью не расходуется, автомашина прожирает топливо просто так.

Большим минусом старых систем зажигания является быстрота износа контактов прерывателя. Обратной же стороной этой медали является то, что эти системы с многоискровой механической распределителем, его называют также «Трамблер»ом, простота, которая обеспечивается 2-ной функцией механизма распределителя.

Для того чтобы повысить вторичное напряжение, которое генерируется такой системой, можно воспользовавшись приборами, на основе полупроводников, которые будут работать в качестве ключей управления. Именно они будут прерывать ток в первичной обмотке катушки. В качестве таких ключей сегодня используются транзисторы, которые генерируют токи до десяти Ампер без всяких повреждений и искр. Существуют экземпляры, построенные на базе тиристоров, но из-за своей нестабильности широкого применения они не нашли.

Одним из вариантов модернизации БСЗ – переделка в контактно-транзисторную систему зажигания (КТСЗ).

На схеме проиллюстрировано устройство КТСЗ.

Данное устройство генерирует искру с достаточно большой длительностью. И благодаря чему сгорание топлива становится оптимальным. По схеме можно разобрать, что система построена на основе так называемого триггера Шмитта. Собран он из транзисторов V1 и V2, усилителя V3, V4 и ключа V5. Здесь ключ выполняет роль коммутатора тока на обмотке катушки.

Триггер предназначен для генерации импульсов с достаточно широким спадом и фронтов при замыкании контактов в прерывателе. В результате чего на первичной обмотке увеличивается быстрота прерывания тока, что в свою очередь намного увеличивает амплитуду напряжения на вторичной обмотке.

Это увеличивает шансы для возникновения более мощной искры, которая способствует улучшению запуска мотора и полному результативному расходу топлива.

В сборке были использованы:
• Транзисторы VI, V2, V3 — KT312B, V4 — KT608, V5 — KT809A, C4106.
• Конденсатор – С2 (от 400 Вольт)
• Катушка B115.

xn—-7sbbil6bsrpx.xn--p1ai

Электронное зажигание для автомобиля

В данной статье расскажем про электронное зажигание для автомобиля. Покажем схему электронного зажигания.

В 90-е годы у меня был автомобиль ВАЗ-2101, Фиатовской сборки, который мне достался от моего деда. Качество автомобиля было таким, что после перегрева двигателя с лопанием компрессионных колец и 90 километрового возвращения до дома, при капитальном ремонте этого двигателя даже не потребовалась расточка блока цилиндров. Поверхности цилиндров при 200 000 пробеге были идеальными. При расходе 7 литров на 100 километров пути, на трассе моей «копейке» не хватало пятой передачи. Один был существенный недостаток – канифолила мозги контактная система зажигания. Уж слишком часто нагорали контакты прерывателя. Покопавшись в радиолюбительской литературе я нашел то, чего моей «ласточке» не хватало – схему электронного зажигания. После установки этой схемы на автомобиль, расход уменьшился до 6,5 литров на 100 километров пути, а проблем с перебоями зажигания не стало. Я давно уже пересел на японца, а вот мой отец – фанат «классики» никогда от неё не отказывался. А сколько по стране ещё бегает Жигулёнков? Схему электронного зажигания, которую я собирал на свою «копейку», я давно уже потерял, но нашёл другую схему, которая почти не отличалась от моей. После некоторой доработки, я собрал для отца предлагаемую ниже схему и что замечательно, у него расход топлива тоже упал приблизительно на 0,5 литра.


Предлагаемая схема электронного зажигания предназначена для установки на автомобили только с контактной системой зажигания.

 

Схема, установленная к стандартной системе контактного зажигания, имеет следующие преимущества:

  • не обгорают контакты прерывателя;
  • предусмотрена схема защиты катушки зажигания от возможного сгорания в результате длительного включения зажигания без вращения двигателя;
  • искра формируется в колебательном режиме, другими словами формируется несколько коротких импульсов, что улучшает качество сгорания паров бензина в цилиндрах ДВС.


Рассмотрим работу схемы электронного зажигания:

При замыкании и размыкании контактов прерывателя SK импульс проходит через С1, кратковременно открывая VT1, VT2 и VT3. При закрывании VT3 возникает искра. С3 немного сглаживает пик импульса высокого напряжения появляющегося между коллектором и эмиттером VT3, защищая его от пробоя. Когда в результате самоиндукции катушки зажигания и заряда С3 напряжение между коллектором и эмиттером достигнет порядка 230 вольт, происходит первичный пробой диода VD3. В результате этого, ток снова пойдёт через первичную обмотку катушки. С3 обеспечивает кратковременную задержку закрывания диода VD3, позволяя насытиться катушке зажигания. Когда диод закрывается, возникает вторая искра, которая немного слабее первой. Процесс образования искры имеет затухающий характер, может повториться несколько раз, и зависит от напряжения пробоя диода VD3 и емкости конденсатора С3. Длительность каждого импульса искрообразования короче, чем один импульс стандартной системы зажигания, а общая длительность пачки импульсов зажигания больше. В результате этого происходит многократное воспламенение паров топлива, без уменьшения срока службы свечей зажигания. Топливо сгорает лучше, уменьшается нагар свечей, что в свою очередь снижает расход бензина.

В случае длительно замкнутых контактов прерывателя, конденсатор С1 постепенно заряжается через замкнутые контакты, ток через конденсатор убывает, соответственно и транзисторы плавно закрываются, защищая катушку зажигания от возможного перегрева.

Элементы схемы: Резисторы – любые, на мощность не ниже указанной на схеме. Их номиналы могут отличаться от указанных на схеме на 20%, схема будет работать надёжно. Электролитические конденсаторы любого типа, на напряжение не ниже указанного на схеме. Диод VD1 — любой маломощный импульсный. Диод VD2 – любой маломощный выпрямительный. Диод VD3 используется и как защитный диод в цепи коллектор-эмиттер транзистора VT3, и как стабилитрон. Обратное напряжение пробоя диода VD3 равное 200…250 вольтам определяет скорость и амплитуду повторных импульсов зажигания, поэтому в качестве VD3 применимы мощные импульсные диоды 2Д213А, 2Д213Б, 2Д231 с любым индексом, 2Д245Б, или два последовательно соединённых 2Д213В. Возможно подобрать диод и другого типа, но с не худшими параметрами и указанным обратным напряжением. Транзистор VT1 – типа КТ361Б,В,Г, или КТ3107 с любой буквой. Транзистор VT2 – типа КТ315Б,Г,Е,Н, или КТ3102 с любой буквой. Транзистор VT3 – типа 2Т812А (КТ812А), можно использовать КТ912А, или КТ926А.

 

Прошу обратить внимание, что плюсовой вывод катушки не отключается от общего плюса системы зажигания, как может показаться на схеме, а лишь питание схемы осуществляется от 12 вольт, имеющимися на катушке зажигания. Разрывается только цепь «прерыватель — катушка зажигания». Как это реализуется изображено на следующих рисунках. На первом изображена стандартная схема зажигания, на втором — подключение схемы электронного зажигания.

 

Для подключения схемы электронного зажигания необходимо разорвать чёрный провод идущий от прерывателя к катушке зажигания. Прерыватель подключить на вход схемы электронного зажигания, а вывод катушки — к коллектору транзистора. Конденсатор висящий на прерывателе можно оставить, а лучше выкинуть, он почти не влияет на работу схемы. Никакие другие цепи «стандартного» зажигания не разрывают и не переключают. Необходимо только запитать схему зажигания: минус — это корпус авто, а плюс взять от другого контакта катушки зажигания (на рисунке — сине-чёрный провод). Все изменения изображены на рисунке красным цветом.

Вся схема собрана на маленькой плате размерами 3,5 х 5,0 см, помещённой в алюминиевый корпус размерами 4,0 х 6,5 х 2,5 см. Транзистор расположен непосредственно на корпусе через слюдяную прокладку. Важно обеспечить изоляцию коллектора транзистора от корпуса автомобиля (нуля). После сборки, для уменьшения расхода топлива, может понадобиться небольшая регулировка угла опережения зажигания.

meanders.ru

Схема электронного зажигания для автомобиля

Схема электронного зажигания для автомобиля

Все знают что в каждом автомобиле используется для розжига топлива искра на свече зажигания.Которая и воспламеняет топливную смесь в цилиндре,напряжение на свече около 20Кв.

Но существуют некоторые режимы работы двигателя, когда нужна значительная энергия искры, до 100 мДж.

Например пусковой режим, работу на бедных смесях при частичном открытии дросселя, работу на холостом ходу. На наших стареньких, видавших виды автомобилях применяются классические, батарейные системы зажигания, которые имеют серьёзные недостатки.

 

На холостых оборотах двигателя между контактами прерывателя такой системы возникает дуговой разряд, поглощающий заметную часть энергии искры. На высоких оборотах двигателя уменьшается вторичное напряжение катушки зажигания из-за дребезга контактов прерывателя, который возникает при их замыкании, уменьшается время замкнутого состояния контактов из-за чего в первичной обмотке катушки зажигания запасаемая энергия может оказаться недостаточной для формирования мощной искры зажигания необходимой для поджигания топливной смеси. В результате снижается мощность двигателя, увеличивается концентрация углекислого газа в выхлопе, не полностью сгорает горючее, получается бензин машина кушает, а едет плохо. В батарейной системе зажигания, особенно с учетом качества деталей для старых авто, быстро изнашиваются контакты прерывателя, что снижает надежность запуска и работы двигателя. Большим достоинством батарейной системы с многоискровым механическим распределителем (в народе трамблер) является ее простота, обеспечиваемая двойной функцией механизма распределителя: прерывание цепи постоянного тока для генерирования высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

Повысить развиваемое такой системой зажигания вторичное напряжение можно применением полупроводниковых приборов, работающих в качестве управляемых ключей, служащих для прерывания тока в первичной обмотке катушки зажигания. Наиболее широкое использование в качестве управляемых ключей нашли мощные транзисторы, способные коммутировать токи амплитудой до 10 А в индуктивной нагрузке без какого-либо искрения и механического повреждения, характерных для контактов прерывателя, также возможно применение силовых тиристоров, но широкой промышленной реализации в системах зажигания с накоплением энергии в индуктивности они не имели.

 

Один из способов улучшения батарейной системами зажигания переделка ее в контактно-транзисторную систему зажигания (КТСЗ). На рисунке ниже приведена принципиальная схема конденсаторно-транзисторного устройства зажигания. Это устройство позволяет формировать искру зажигания с большой длительностью, благодаря этому процесс сгорания становится близким к оптимальному в большом диапазоне изменения оборотов двигателя и его нагрузки.

Схема электронного зажигания

 

 

 

 

 

 

 

 

Устройство зажигания состоит из триггера Шмитта на транзисторах V1 и V2, развязывающих усилителей V3, V4 и электронного ключа V5, с помощью которого коммутируется ток в первичной обмотке катушки зажигания.

Печатная плата:

Триггер Шмитта позволяет формировать коммутирующие импульсы с крутым фронтом и спадом при замыкании и размыкании контактов прерывателя. Благодаря этому в первичной обмотке катушки зажигания увеличивается скорость прерывания тока, что увеличивает скорость изменения и амплитуду высоковольтного напряжения на выходе вторичной обмотки катушки.

В результате существенно улучшаются условия для возникновения искры в свече зажигания. Высокие энергетические характеристики искры в описанной системе зажигания способствуют улучшению запуска автомобильного двигателя и более полному сгоранию горючей смеси.

В устройстве электронного зажигания применены транзисторы VI, V2, V3 — КТ312В, V4 — КТ608, V5 — КТ809А (также пробовался транзистор C4106, на фото именно он). Конденсатор С2 — с рабочим напряжением не ниже 400 В. Катушка зажигания стандартная — Б 115, используемая в легковых автомобилях.

Обсуждение на форуме

radiostroi.ru

Электронное зажигание — Меандр — занимательная электроника

Читать все новости

Предлагаемая схема (Рис. 1) предназначена для установки на автомобили с контактной системой зажигания.

Рис.1

Она имеет следующие преимущества:

— мощность искры увеличена:

— контакты прерывателя не обгорают,

— не нужен резистор в цепи катушки зажигания:

— при включенном зажигании, но незаведенном двигателе схема плавно, без искры, отключается.

Мощность искры в данной схеме зависит от температуры VT2, и на горячем двигателе уменьшается, а на холодном — увеличивается, тем самым облегчая запуск.

При замыкании и размыкании контактов прерывателя SK-импульс проходит через С1, кратковременно открывая VT1 и VT2. При закрывании VT2 возникает искра. С2 сглаживает пик импульса напряжения. R6 и R5 ограничивают максимальное напряжение на коллекторе VT2. При достижении нужного напряжения VT2 приоткрывается, ограничивая дальнейший рост напряжения.

Напряжение открывания VT2 зависит от величины Uбэ которая, в свою очередь, зависит от температуры. При разомкнутых контактах прерывателя VT1 и VT2 закрыты. При длительно замкнутых контактах ток через С 1 постепенно убывает, соответственно и VT1 и VT2 плавно закрываются, защищая катушку зажигания от перегрева.

Детали: С1 — типа КМ или К73. R6 обеспечивает стабилизацию выходного напряжения. Его номинал подбирается для конкретной катушки зажигания. На схеме величина R6 указана для катушки Б115. Ее основные параметры: Ri=1.6 Ом, I<8А, Ui<330 В. Коэффициент трансформации К=68. Для катушки Б116 (Ri=0,6 Ом, Ii<20 A, Ui<160 В, К=154) величина R6=11 к. Для этой катушки лучше использовать в качестве VT2 транзисторы КТ898А.

Места на печатной плате не экономил, дорожки делал широкими:

Печатная плата здесь

Устройство отлично работает в месте с Октан-корректором, схему которого можно посмотреть  здесь

Возможно, Вам это будет интересно:

meandr.org

Усовершенствованная электронная система зажигания автомобиля.

   В последние годы электронные приборы находят все большее применение в автомобильном транспорте, в том числе и приборы электронного зажигания. Прогресс автомобильных карбюраторных двигателей неразрывно связан с их дальнейшим совершенствованием. Кроме того, сейчас к приборам зажигания предъявляются новые требования, направленные на радикальное повышение надежности, обеспечение топливной экономичности и экологической чистоты двигателя.

Существуют две системы устройств электронного зажигания — транзисторные и тринисторные. Сравнивая их между собой, можно отметить характерные преимущества и недостатки.

Транзисторные устройства проще и дешевле, обеспечивают большую длительность искрового разряда в свечах, достигающую 2.Б…З мс. Однако при сравнительно небольшой скорости нарастания высоковольтного напряжения на свечах эффективность работы их значительно падает от появления шунтирующих нагрузок, которые обусловлены дополнительными утечками тока, вызванными загрязнением электропроводки, самого распределителя, работающего под высоким напряжением, изоляторов свечей и нагара в них, а со временем и старения изолирующих деталей системы зажигания. Кроме того, транзисторные устройства требуют применения специальной катушки зажигания.

Тринисторные устройства несколько сложнее и позволяют получить высокую скорость нарастания высоковольтного напряжения на свечах, практически не критичны к шунтирующим нагрузкам. Ток утечки не влияет существенно на качество искрового разряда при крутом фронте его нарастания. Но, имея малую длительность искры, в лучших конструкциях — до 0,6 мс, тринисторные устройства также не обеспечивают эффективной работы двигателя в свете новых требований.

Тринисторная система зажигания принципиально отличается от транзисторной тем, что в ней энергия накапливается не в катушке зажигания, а в накопительном конденсаторе. Такой принцип действия позволяет в наибольшей степени устранить недостатки, присущие как классической контактной, так и транзисторной системам. Поэтому тринисторная система была взята за основу с целью доработки ее таким образом, чтобы увеличить длительность искрового разряда и свече до 1,1…1,3 мс, так как типичная для таких систем длительность 0,25 мс явно недостаточна для стабильной работы двигателя на разных режимах, полного сгорания топливной смеси и особенно для надежного пуска двигателя в зимнее время.

Как было установлено автором, на автомобиле ЗАЗ для надежного пуска двигателя в зимнее время длительность искрового разряда должна быть как минимум 0,8 мс с экспериментально измеренной амплитудой напряжения 1 В на сопротивлении 14 Ом в цепи свечи при минимальном напряжении бортовой сети 5…6 В, что обусловлено работой стартера. Эти условия были исходными для разработки усовершенствованного блока. Известно, что выпускаемые промышленностью тринистор-ные электронные устройства, имеющие длительность искрового разряда 0,25…0,6 мс, обеспечивают стабильную работу устройства при снижении напряжения питания до 8 В, что явно недостаточно для надежного пуска двигателя в зимнее время.

Технически задача была сформулирована следующим образом: при пуске двигателя необходимо подавать довольно мощную серию импульсов длительностью не менее 0,8 мс во время нахождения поршня цилиндра в верхней мертвой точке. Следовало также попытаться использовать этот принцип и для основного режима работы двигателя.

В результате разработки был создан блок тринисторного зажигания (БТЗ) со следующими параметрами:

Напряжение питания, В 12±50 %

Начальный потребляемый ток, А ….. 0,55

Максимальный потребляемый ток, А . . . . 2,2…2,5

Максимальная частота вращения 4-цилиндрового двигателя, об/мин 5000

Начальная амплитуда 1-го разрядного импульса на сопротивлении 14 Ом, В 3±0,2

Длительность искрового разряда в свече, мс . 1,1…1,3

Напряжение на накопительном конденсаторе, В 400

Нестабильность напряжения на накопительном
конденсаторе при минимальной и максимальной частоте вращения, %. 10

Рабочая частота генератора, Гц ….. 800

Принципиальная электрическая схема БТЗ приведена на рис. 1. Во многом она повторяет известные разработки, поэтому ниже приведено описание работы отличающихся узлов. Подключение БТЗ к системам зажигания автомобилей приведено на рис. 2, 3.


Основным отличием БТЗ является введение обратной связи на управляющий электрод тринистора VS1 через цепочку C5R7R8VD12, в результате чего за один цикл работы БТЗ на управляющий электрод подается не только импульс по цепи запуска от контактного прерывателя, как раньше, а пакет из 4…5 импульсов (рис.4). В итоге после размыкания контактов прерывателя тринистор дополнительно открывается соответственное число раз, обеспечивая тем самым более полную разрядку накопительного конденсатора С4 на первичную обмотку катушки зажигания, т. е. более полное использование запасенной энергии на создание разряда в искровом промежутке.

Дополнительная серия искровых разрядных импульсов в свече после первых двух (импульсы 3… на рис 5) образуется за счет накопленной от разрядки конденсатора С4 электромагнитной энергии в катушке зажигания при пробое искрового промежутка свечи и трансформации этой энергии в первичную обмотку с подзарядкой накопительного конденсатора. Эти же импульсы воздействуя с уменьшающейся амплитудой через цепочку C5R7R8VD12 на управляющий электрод тринистора VS1, заставляют его открываться через каждые 150…200 мкс, что обеспечивает повторную разрядку накопительного конденсатора С4 на первичную обмотку. Так продолжается до тех пор, пока не израсходуется вся энергия, запасенная в катушке зажигания от первого разрядного импульса. Таким образом, добавлением цепочки C5R7R8 с диодом VD12 удалось увеличить длительность искрового разряда в свече до 1,3 мс. В известных разработках тринисторных систем обеспечено лишь частичное использование энергии, запасенной емкостным накопителем. Искровой разряд БТЗ имеет колебательный затухающий характер с изменением полярности полуволн. Такой характер разрядного процесса положительно влияет на увеличение срока службы свечей, так как происходит равномерное выгорание металла как центрального, так и бокового электродов в искровом промежутке.

Многократное искрообразование в течение одного цикла создает дополнительную нагрузку на преобразователь постоянного тока и увеличивает время запуска автогенератора после срыва колебаний при включении тринистора. При испытании модернизированного заводского блока зажигания (типа Электроника) напряжение на накопительном конденсаторе снижалось с 400 до 80 В на большой частоте вращения коленчатого вала двигателя. Такое устройство не могло нормально работать. С целью устранения этого недостатка был изготовлен более мощный преобразователь с удвоением выходного напряжения. Это схемное решение, являясь второй отличительной чертой усовершенствованного блока зажигания, привело к уменьшению времени пуска автогенератора с 1 до 0,25 мс, так как обеспечивалась более мягкая связь между тринисторным коммутатором и автогенератором. При неизменном напряжении питания устройство позволяет обеспечивать на минимальной и максимальной частоте вращения коленчатого вала двигателя довольно постоянное напряжение на накопительном конденсаторе С4, колеблющееся в пределах лишь 8…10%. Напряжение на накопительном конденсаторе выбрано таким же, как и у заводского блока — 400 В при номинальном напряжении питания.

Элементы R5 и СЗ в цепи высокого напряжения +400 В служат для сглаживания и стабилизации высокого напряжения на выходе выпрямителей, а также для уменьшения времени запуска автогенератора.

В связи с уменьшением количества витков вторичной обмотки трансформатора Т1 в два раза увеличилась его надежность, так как напряжение на вторичной обмотке уменьшилось с 400 до 200 В.

Усовершенствованный таким образом блок обеспечивает значительное улучшение пуска двигателя в зимнее время, надежную работу на скоростях до 90… 100 км/ч. На автомобиле ЗАЗ-968 был неоднократно проверен расход бензина на 100 км пробега. Экономия составила 7,2 %. Наряду с установкой БТЗ был также увеличен зазор в свечах до 1,5 мм, а положение регулятора качества смеси для ее обеднения было изменено с 1,5…2,0 оборотов (720°) до 180…2000 от своего начального полностью закрученного положения.

Выясняя причины плохого пуска двигателя в зимнее время, было обнаружено следующее: при падении напряжения в бортсети автомобиля до 5…6 В во время работы стартера БТЗ, как и другие блоки зажигания, не обеспечивал стабильной подачи искры в цилиндры. Причиной тому оказалось следующее: при таком значительном снижении напряжения питания амплитуда управляющих импульсов, которые поступают в т.А при размыкании контактов прерывателя (рис. 1), оказывается недостаточной для надежного запуска тринистора VS1, становясь соизмеримой с уровнем помех от работающего стартера и транзисторного автогенератора. Это вызывает пропуски искрообразования. Используемый фильтр L1C7 выполняет две функции. Основная из них: после размыкания прерывателя в обмотке дросселя L1 за счет накопленной магнитной энергии возникают затухающие колебания из-за переходного процесса, по принципу равносильного тому, как это происходит в классической батарейной системе зажигания. Амплитуда этих колебаний в зависимости от индуктивности дросселя L1 может достигать нескольких десятков вольт. Положительные полуволны колебаний длительностью до 10… 15 мкс через диод VD11 накладываются на передние фронты основных импульсов и обеспечивают надежный запуск тринистора VS1 (в описываемом устройстве их амплитуда составляла 7…9 В).

Второе назначение фильтра L1C7 — уменьшение влияния помех от работы стартера и транзисторного автогенератора на пусковую цепь тринистора.

Конструктивно БТЗ может быть выполнен в двух модификациях: в виде объемного модуля с расположением деталей на платах с монтажными лепестками или изготовлением общей печатной платы блока, одновременно являющейся и несущей конструкцией. По мнению автора, для индивидуального изготовления проще первый вариант, так как платы с монтажными лепестками могут быть использованы от старых, отслуживших свой срок радиоприборов. В качестве разъема для подключения БТЗ к бортсети автомобиля подойдут панельки и цоколи от старых радиоламп. Переход от электронного зажигания на обычное (контактное) производится простой перестановкой разъема — цоколя из одной панельки в другую (см. рис. 1). В БТЗ использованы резисторы типа МЛТ, кроме проволочных R1 и R4, которые намотаны на каркасах резисторов типа ВС-0,5. В качестве накопительного конденсатора С4 использованы два конденсатора МБГ на 1 мкФ, 500 В.

Выпрямительный сдвоенный диодный блок КЦ-403Б может быть заменен диодами, например МД218, но это несколько увеличит размеры устройства из-за монтажа восьми диодов. В таком случае лучше использовать диоды КД105В.

Конденсатор С5 должен быть высокого качества, герметизированным, рассчитанным на напряжение не менее 1000 В, например КБГ-М2. В качестве дросселя L1 можно использовать вторичную обмотку малогабаритного выходного трансформатора транзисторных радиоприёмников ВЭФ, Альпинист и др. Индуктивность дросселя составляет 0,07…0,1 Гн.

Трансформатор Т1 должен быть выполнен на кольцевом сердечнике из феррита марки 2000 НМ типоразмера К45Х28Х12, составленном из двух колец, или на Ш-образном ферритовом сердечнике Ш12Х15, составленном из двух половин без зазора. Использование трансформаторного железа исключается.

Данные обмоток (в порядке их намотки):

III — 500 + 50+50 витков (с отводами проводом ПЭЛШО 0,23 в случае тороида (кольца). Для Ш-образного сердечника можно использовать провод ПЭВ-1 0,23. Намотку вести с межслойной изоляцией из кабельной или конденсаторной бумаги;

Иа + Пб — 35+35 витков проводом ПЭЛШО-0,75 (намотка в два провода) в случае тороида, а для Ш-об-разного сердечника — ПЭВ-1 0,75;

la+ I6—11 + 11 витков проводом ПЭЛШО-0,28 (намотка в два провода) для обоих сердечников.

Транзисторы П210А…Г желательно подобрать в паре, т. е. с равными или по возможности близкими значениями обратных токов коллекторных переходов и коэффициентов усиления по току. Транзисторы установлены на унифицированных радиаторах по ТУ.8.650.022.

Настройка. Правильно собранный блок БТЗ обычно в дополнительной наладке не нуждается. Если же после сборки и проверки правильности монтажа блок не будет нормально работать, то основными причинами могут быть следующие:

если устройство зажигания переходит в режим непрерывной генерации искр и не управляется контактами прерывателя, то либо в нем применен тринистор с низким напряжением переключения, либо пробит диод VD11;

если отсутствует генерация преобразователя напряжения при заведомо исправных транзисторах, необходимо проверить правильность (полярность) подключения базовых обмоток трансформатора;

если работа преобразователя сопровождается хриплым или шипящим звуком, надо проверить диоды выпрямителя и правильность их включения, а затем транзисторов. Причиной большой нагрузки на преобразователь может быть также неисправность накопительного конденсатора С4. В случае исправности тринистора надо убедиться в отсутствии замыкания его корпуса на общую (минусовую) шину устройства.

Необходимо помнить, что корпус тринистора является анодом и в рабочем состоянии всегда будет находиться под высоким напряжением +400 В.

При проверке устройства зажигания вне автомобиля на стенде следует обязательно соединить корпус катушки зажигания с корпусом электронного блока (общая минусовая шина), так как в противном случае может произойти пробой катушки и повреждение деталей электронного блока.

Необходимо помнить, что напряжение на выходе катушки зажигания значительно более высокое, чем в обычной системе зажигания, поэтому надо соблюдать осторожность и правила техники безопасности.

Перед установкой устройства на автомобиль желательно проверить его работоспособность с катушкой зажигания при напряжении питания 12,6 В от аккумулятора. При этом следует помнить, что без подключенной свечи к высоковольтному выходу катушки зажигания нельзя испытывать устройство, так как это грозит выходом катушки из строя. Напряжение на накопительном конденсаторе проверяют в контрольной точке Б относительно корпуса блока (общей минусовой шины). Оно должно быть равно 400±20 В.

В случае большего отклонения напряжения следует переключить выводы вторичной обмотки трансформатора. Схема измерения напряжения на конденсаторе G4 приведена на рис. 6.

Желательно также убедиться, работает ли дополнительная цепочка C5R7R8VD12. Для этого ее вначале отключают. При имитации работы прерывателя искра просматривается в виде одной тонкой жилки толщиной до 0,2 мм с параметрами искрового разряда по рис. 5, где длительность импульсов 1 — 2 составляет около 0,4 мс. С подключением цепочки искра становится более яркой и широкой, видно много искровых разрядов в прямом и обратном направлениях — так называемая мохнатая искра.

Измерение амплитуды и длительности выходного импульса. Этот параметр блока является основным, определяющим его эффективность. Большинство авторов, представивших свои конструкции в технических изданиях за период 1976—1983 гг., не приводили данных о длительности искрового разряда, его характере, а также о схеме и методике его измерения.

Для измерения необходим генератор импульсов управления с регулируемой частотой следования в пределах 200 Гц. При отсутствии его потребуется автономный распределитель зажигания, вращаемый электродвигателем постоянного тока с переходной муфтой. Электродвигатель запитывают от зарядного устройства через реостат, для того чтобы регулировать скорость вращения валика распределителя.

Схема измерения параметров разряда представлена на рис. 7. Выбор измерительного сопротивления продиктован удобством масштаба отсчета и рассмотрения осциллограммы, а также соображениями техники безопасности. Зазор искрового промежутка свечи — не менее 1,5 мм.

Для реальной оценки длительности искрового разряда с учетом компрессии двигателя были проведены дополнительные измерения на разряднике с зазором 7 мм и на работающем двигателе, когда на вход осциллографа подавался сигнал с трех витков изолированного провода, намотанного на высоковольтный провод первого цилиндра. Результаты измерений примерно совпали. На режиме холостого хода двигателя длительность искрового разряда, равная 1,3 мс, сохраняется. На большей частоте вращения коленчатого вала двигателя остается шесть импульсов с длительностью 1,1 мс, а напряжение на накопительном конденсаторе уменьшается с 400 до 350 В. Амплитуда разрядных импульсов уменьшилась также на 10 %.

Автор имел возможность проверить БТЗ на стенде при частоте вращения валика распределителя до 720 об/мин с подключенным разрядником с зазором 7 мм. Длительность искрового разряда при этом уменьшалась до 1,0 мс, напряжение на накопительном конденсаторе снижалось до 320 В, а амплитуда разрядных импульсов падала на 25 %.

Для сравнения усовершенствованного блока БТЗ с другими известными устройствами были сняты осциллограммы характера искрового разряда на одном и том же сопротивлении в цепи свечи, равном 14 Ом. На рис. 5 они изображены с соблюдением масштаба амплитуд и длительности искры.

Заключение. Предлагаемая модификация БТЗ была собрана в виде макетного образца и испытана в 1984—1985 гг. на автомобилях ЗАЗ, Москвич-412, ВАЗ-2101. В общей сложности пройдено 15 000 км без каких-либо замечаний и отказов в работе. Блок зажигания в автомобиле ЗАЗ располагается в салоне за задним сиденьем на подставке для улучшения его охлаждения. Размещать его в моторном отсеке не следует из-за высокой температуры в летнее время, а также большой запыленности. В автомобилях Жигули и Москвич блок может быть укреплен под приборным щитком или в другом более удобном месте. Жгут, соединяющий БТЗ с системой зажигания автомобиля, может быть длиной до 1,5 м. На передней панели блока имеются гнезда под штепсельную вилку, куда выведено напряжение +210 В от первого выпрямительного мостика (до удвоения) для пользования в пути электробритвой типа Харьков или другой с коллекторным приводом.

Были проведены измерения содержания СО в выхлопных газах двигателя ЗАЗ с контактной системой зажигания и с блоком БТЗ. С контактной системой после оптимальной подрегулировки карбюратора содержание СО составило 3,3 %. При работе двигателя с блоком БТЗ и выполненных регулировках карбюратора согласно приведенной выше рекомендации с зазором в свечах 1,5 мм содержание СО составило 2,1 %.

П.Гацанюк.

Источник: В помощь радиолюбителю, №101. 




П О П У Л Я Р Н О Е:

  • Зарядное устройство для автомобильных аккумуляторов
  • Существует много разных схем зарядных устройств для автомобильных аккумуляторов. Любая из них обладает своими достоинствами и недостатками. В статье, ниже рассмотрим несколько схем ЗУ для автомобильных АКБ.

    Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах.

    Эти схемы обладают существенными недостатками…   Подробнее…

  • «Умная» машина на одной микросхеме.
  • Если у Вас есть машинка с двух-моторным приводом, то на одной микросхеме-драйвере управления двигателем можно сделать забавную игрушку-робота — «умную» машину, которая будет двигаться на свет или (в зависимости от подключения двигателей) наоборот, будет прятаться в темноту. Она может ехать вперед в поисках света или назад, уезжая в тьму, а также следовать за рукой или ехать не сворачивая с дороги.

    Подробнее…

  • Схемы самодельных ЗУ для автомобильных АКБ на TL494
  • Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.

    Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.

    Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.

    Подробнее…

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:



Популярность: 9 731 просм.

www.mastervintik.ru

ЭЛЕКТРОННОЕ ЗАЖИГАНИЕ ДЛЯ АВТО

   Каждый автолюбитель стремится улучшить параметры своего автомобиля, особенно такие, как расход топлива, мощность, запуск двигателя в зимнее время. В камере сгорания автомобильного карбюраторного двигателя рабочая смесь воспламеняется как в период пуска, так и во время его работы посредством электрического разряда между электродами свечи, ввернутой в головку цилиндров двигателя. Надёжное образование между электродами свечи искры, происходит при довольно высоком напряжении около 20кВ. На прогретом двигателе к моменту искрообразования рабочая смесь сжата и имеет температуру, близкую к температуре самовоспламенения. В этом случае достаточно даже небольшой энергии разряда —5мДж. Но существуют некоторые режимы работы двигателя, когда требуется значительная энергия искры — до 100 мДж. Например пусковой режим, работу на бедных смесях при частичном открытии дросселя, работу на холостом ходу. На наших стареньких, видавших виды автомобилях применяются классические, батарейные системы зажигания, которые имеют серьёзные недостатки.


   На холостых оборотах двигателя между контактами прерывателя такой системы возникает дуговой разряд, поглощающий заметную часть энергии искры. На высоких оборотах двигателя уменьшается вторичное напряжение катушки зажигания из-за дребезга контактов прерывателя, который возникает при их замыкании, уменьшается время замкнутого состояния контактов из-за чего в первичной обмотке катушки зажигания запасаемая энергия может оказаться недостаточной для формирования мощной искры зажигания необходимой для поджигания топливной смеси. В результате снижается мощность двигателя, увеличивается концентрация углекислого газа в выхлопе, не полностью сгорает горючее, получается бензин машина кушает, а едет плохо. В батарейной системе зажигания, особенно с учетом качества деталей для старых авто, быстро изнашиваются контакты прерывателя, что снижает надежность запуска и работы двигателя. Большим достоинством батарейной системы с многоискровым механическим распределителем (в народе трамблер) является ее простота, обеспечиваемая двойной функцией механизма распределителя: прерывание цепи постоянного тока для генерирования высокого напряжения и синхронное распределение высокого напряжения по цилиндрам двигателя.

   Повысить развиваемое такой системой зажигания вторичное напряжение можно применением полупроводниковых приборов, работающих в качестве управляемых ключей, служащих для прерывания тока в первичной обмотке катушки зажигания. Наиболее широкое использование в качестве управляемых ключей нашли мощные транзисторы, способные коммутировать токи амплитудой до 10 А в индуктивной нагрузке без какого-либо искрения и механического повреждения, характерных для контактов прерывателя, также возможно применение силовых тиристоров, но широкой промышленной реализации в системах зажигания с накоплением энергии в индуктивности они не имели.


   Один из способов улучшения батарейной системами зажигания переделка ее в контактно-транзисторную систему зажигания (КТСЗ). На рисунке ниже приведена принципиальная схема конденсаторно-транзисторного устройства зажигания. Это устройство позволяет формировать искру зажигания с большой длительностью, благодаря этому процесс сгорания становится близким к оптимальному в большом диапазоне изменения оборотов двигателя и его нагрузки.


   Устройство зажигания состоит из триггера Шмитта на транзисторах V1 и V2, развязывающих усилителей V3, V4 и электронного ключа V5, с помощью которого коммутируется ток в первичной обмотке катушки зажигания.


   Триггер Шмитта позволяет формировать коммутирующие импульсы с крутым фронтом и спадом при замыкании и размыкании контактов прерывателя. Благодаря этому в первичной обмотке катушки зажигания увеличивается скорость прерывания тока, что увеличивает скорость изменения и амплитуду высоковольтного напряжения на выходе вторичной обмотки катушки.

   В результате существенно улучшаются условия для возникновения искры в свече зажигания. Высокие энергетические характеристики искры в описанной системе зажигания способствуют улучшению запуска автомобильного двигателя и более полному сгоранию горючей смеси.  

   В устройстве электронного зажигания применены транзисторы VI, V2, V3 — КТ312В, V4 — КТ608, V5 — КТ809А (также пробовался транзистор C4106, на фото именно он). Конденсатор С2 — с рабочим напряжением не ниже 400 В. Катушка зажигания стандартная — Б 115, используемая в легковых автомобилях. Автор конструкции: Самоделкин.

el-shema.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о
2019 © Все права защищены. Карта сайта