Что лучше проводит тепло алюминий или медь – Теплопроводность меди – как влияет на свойства меди? + Видео

Теплопроводность меди – как влияет на свойства меди? + Видео

Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.  

1 Медь – коротко про теплопроводность

Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м2, толщиной 1 м, за 1 секунду при единичном градиенте температуры.

Рекомендуем ознакомиться

Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м

*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

  • алюминий;
  • железо;
  • кислород;
  • мышьяк;
  • сурьма;
  • сера;
  • селен;
  • фосфор.

Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

2 Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

3 Минусы высокой теплопроводности

Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.

У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.

При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.

4 Как у меди повысить теплопроводность?

Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.

Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.

tutmet.ru

Алюминий обладает высокой теплопроводностью и электропроводностью. Почему в таком случае его широко используют в теплои

Советую вам обновить и освежить свои познания в теории теплообмена и на всякий случай термодинамику чисто популярно-ознакомительно. Почитал я тут и удивился некоторым выкладкам (одни весьма справедливы, другие мягко говоря… противоречивы), которые наверняка вас еще больше запутали. Итак тепло, как вам пояснили, передается тремя элементарными способами. Отбросим сразу один вид теплообмена — конвекцию. В двух других вы просто запутались применительно и из-за замечательных свойств материала, металла называемого алюминием. Когда говорят об отражении тепла поверхностью скажем алюминиевой фольги — говорят ТОЛЬКО о втором способе теплопередачи — излучении (иногда называют радиацией, точнее — тепловым излучением ) это способ передачи посредством электромагнитных волн (т. к. инфракрасное излучение это определенный участок спектра электромагнитных излучений, или волн — как угодно. Этот способ теплопередачи действует даже в вакууме). В данном случае, независимо от других свойств металла-алюминия используют только высокую отражательную способность поверхности альминиевой фольги (алюминия) .Проще говоря — фольга используется в качестве зеркала для отражения тех самых тепловых электромагнитных излучений (кстати наряду с серебром, алюминий применяют для изготовления обычных зеркал). В этой части все понятно. Теперь что касается третьего способа передачи тепла (а называется он как раз теплопроводностью-это перенос тепловой энергии структурными частицами вещества (молекулами, атомами, ионами) в процессе их теплового движения и еще одного свойства алюминия, тоже как не кстати, называемого теплопроводностью (это-количественная оценка способности конкретного вещества проводить тепло, алюминий из металлов уступает только меди, золоту и серебру). Так вот рассматривая третий вариант передачи тепла можно говорить о тепловой проводимости алюминия. Т. е. условии когда тепловая энергия от очага тепла или тела имеющего высшую температуру по сравнению с алюминиевым изделием ( не важно фольга это, алюминиевая пластина или настоящий алюминиевый радиатор) переносится НЕПОСРЕДСТВЕННЫМ физическим контактом и соприкосновением поверхностей (тем лучше происходит передача, чем лучший контакт и большая поверхностью соприкосновения). Вспомните алюминиевые радиаторы в автомобилях или в том же компьютере на процессоре, где используется алюминиевые радиаторы для отвода тепла, способом теплопроводности. Теперь обобщим наши исследования на примере скажем устройства термоса. Если вспомните основной элемент термоса это двухстенная колба обе стенки которой покрыты обычным зеркальным слоем и стенки разнесены воздушной прослойкой, так вот воздушная прослойка препятствует передачи способом теплопроводности, а зеркальная поверхность препятствует способу передачи излучением. Точно так же устроена теплоизоляция несущих тепло трубопроводов. Они обмотаны минеральным волокном, которое обеспечивает защиту от передачи способом теплопроводности, а поверх минерального волокна укладывают альминиевую фольгу, которая играет роль зеркала для отражения излучения от трубы, да, да, именно так, а не иначе, а попутно алюминиевая фольга имея светлую внешнюю (здесь уместно вспомнить о понятии абсолютно белом и черном веществах) поверхность намного меньше излучает тепла (эл. магнитных волн) в пространство. Поэтому фольга не соприкасается и не должна соприкасаться с поверхностью трубы, а иначе весь смысл термоизоляции был бы нарушен, так как вы уже знаете в случае соприкосновения фольги и трубы процесс передачи (потери) тепла в атмосферу многократно увеличились бы вследствии действия теплопроводности и высокой теплопроводностью алюминиевых изделий .Надеюсь, вам это помогло разобраться. В противном случае читайте другие источники <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Теплопроводность» target=»_blank»>http://ru.wikipedia.org/wiki/Теплопроводность</a> <a rel=»nofollow» href=»http://normis.com.ua/index.php?option=com_content&amp;view=article&amp;id=18&Itemid=25″ target=»_blank»>h

Приведи сначала пример с АЛЮМИНИЕВОЙ ТЕПЛОИЗОЛЯЦИЕЙ. Применяют для ТЕПЛООТВОДА-это другое дело

потому что излучение тепла это около 90% потерь, (теплопроводность и конвекция всего 10)а он хорошо отражает их. отражение и теплопроводность разные явленяе ч

Фольга отражает тепло, а за ней находится термоизоляция.

Аллюминий имеет высокую отражающую способность. А тепло это инфрракрасное излучение. Аллюминий благодаря блестящей поверхности отрает тепло. Благодаря этому свойству его применяют как теплоотражающую поверхность в комплексе с теплоизоляцией.

«Широко используется» это громко сказано.. . Алюминий — действительно обладает высокой отражающей способностью, но он и его сплавы имеют нехорошую особенность. Они все подвержены коррозии при высокой температуре, наличии влаги и кислорода (в среде обладающей не нейтральным рН или когда на него «наводится» напряжение) . Поэтому применять его как теплоизоляционный материал можно в очень ограниченных условиях (там где сухо) , что приводит к резкому ограничению в области применения его как теплоизоляционного материала. Тепло передается: 1. при теплопроводность 2. При излучении (солнечный свет, огонь костра — вот тут алюминий силен, он очень хорошо отражает тепловое излучение) 3. Конвекция.

Потому что тепло может передаваться — и, соответственно, ТЕРЯТЬСЯ — разными способами. В частности, излучением и теплопроводностью. Вот теплопроводность у алюминия действительпено высокая. А излучение, которое напрямую связано с отражательно способностью, — как раз низкое. Потому что то, что хорошо отражает свет, плохо его излучает. Поэтому покрытое блестящим алюминием тело, например, труба, а) не поглощает свет снаружи — а значит, не нагревается внешним излучением, и б) не излучает сама — а значит, не отдаёт то тепло, которое там внутри.

<a rel=»nofollow» href=»http://www.alutherma.ru» target=»_blank»>http://www.alutherma.ru</a> Изоляция с Алюминием

touch.otvet.mail.ru

меди, латуни и алюминия, теплопередача

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

tokar.guru

Существует и другой способ перемещения тепла (теплопередачи). Он возможен не только в подвижной среде (жидкости и газе), но и в твердых телах. Тепло может перемещаться по телу и через него к другому предмету без перемещения частей этого тела относительно друг друга, т.е. без перемещения вещества. Такой способ носит название теплопроводности.

Различные вещества по-разному проводят тепло. Лучшие проводники тепла — металлы (особенно серебро, медь). Хуже всего проводят тепло теплоизоляторы — воздух, войлок, древесина. Плохая теплопроводность воздуха используется в наших домах — слой воздуха между двойными стеклами окон является прекрасным теплоизолятором.

Таблица теплопроводности
(сравнение чисел характеризует относительную скорость передачи тепла каждым материалом)

Вещество Коэффициент
теплопроводности
Серебро 428
Медь 397
Золото 318
Алюминий 220
Латунь 125
Железо 74
Сталь 45
Свинец 35
Кирпич 0,77
Вода 0,6
Сосна 0,1
Войлок 0,057
Воздух 0,025

physica-vsem.narod.ru

Какой кулер лучше медный или алюминевый, и объясните почему.

Лучше радиатор медный. Теплопроводность меди больше алюминию. Но тут еще играет площадь поверхности. То есть если допустим у медного два ребра, а у алюминиевого 10, то алюминиевый будет лучше отводить тепло.

Изучай: <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Теплопроводность» target=»_blank»>http://ru.wikipedia.org/wiki/Теплопроводность</a>

Лучше хороший. И не обязательно медный будет лучше алюминиевого, играет роль совокупность параметров.

а как ты думаешь у какого материала из представленных наибольшая теплопроводность теплоотдача если узнаешь какой тот и ответ

У любого кулера есть характеристика, которая называется термосопротивление, вот на неё и надо ориентироваться, у любого приличного кулера она указывается в паспорте, если её нет, то это должно вызывать сомнения. Китайцы из «подвалов» уже давно научились «варить» медь, которая по теплопроводности уступает алюминию, который тоже сплавом является, а не алюминием.

правильно ответили, мадный лучше, так как лучше поглощает в себя тепло, но если алюминевый больше, то он будет лучше. есть правда ещё большие алюминевые кулера (в основном шли под интел) с медным пятаком снизу, тоже довольно неплохой вариант

Лучше тот, параметры которого тебе наиболее подходят и совсем не важно, из чего он будет сделан.

Медный лучше аллюминиего (как не парадоксально)… но он дорог (чистый лучше проводит тепло) поэтому — аллюминий….

touch.otvet.mail.ru

Алюминиевые против стальных – выбираем радиатор

На сегодняшний день радиаторы производятся из разнообразных материалов, наиболее распространенные, из которых сталь, нержавеющая сталь и алюминий. Всегда есть сомнения, какой именно радиатор выбрать для установки в доме? Очевидно, что это зависит от личного вкуса, а также от требований, которые вы поставили перед собой к качеству отопления помещения. Алюминий, безусловно, является самым экологичным материалом и имеет огромное количество преимуществ.

Как выбрать радиатор отопления: советы специалистов

В этой статье мы не будем рассматривать чугунные радиаторы, т.к. они теряют популярность среди покупателей. Сосредоточим внимание на самых востребованных моделях. Материал в деталях расскажет о преимуществах алюминиевых и стальных батарей.

Алюминиевые радиаторы имеют малый вес

Алюминиевые радиаторы легче, чем традиционные стальные или чугунные радиаторы, этот факт дает возможность расположить такой радиатор на любой стене в помещении. Батареи из алюминия можно повесить на стену, даже в ситуациях, когда толщина не позволяет сделать глубокого закрепления. Это существенно экономит затраты на оплату строительных работ, так как повесить их можно очень быстро и надежно. Мы рекомендуем ознакомиться с ассортиментом радиаторов отопления представленных в интернет магазинах, на сайтах производителей можно купить алюминиевые радиаторы ведущих европейских производителей (ESPERADO, FERROLI, GLOBAL, FARAL, FONDITAL) с гарантией 10 лет!

Алюминий — коррозионностойкий материал

Алюминий не подвержен коррозии, что делает его идеальным материалом для производства радиаторов, которые предполагается устанавливать в таких помещениях, как ванные комнаты и кухни, где выоская влажность.

Алюминий хорошо проводит тепло

Алюминий быстро нагревается, что делает его отличным проводником тепла.  Алюминиевые радиаторы имеют низкое содержание воды, а это означает, что после включения такие устройства дают интенсивный всплеск тепла и нагревают помещения довольно быстро. Установив алюминиевые радиаторы можно быстро достичь требуемой температуры в комнатах, так как они имеют наименьшее время отклика. Главным преимуществом является существенная экономия энергетических затрат в отопительный сезон и как прекрасный бонус – экономия денежных средств, так как алюминиевые радиаторы можно выключать на время вашего отсутствия в доме, а вернувшись домой включить и быстро получить теплый дом не тратя на ожидание длительное время.

Алюминиевые радиаторы имеют широкий диапазон конструкций и цветов

Бытует распространенное мнение, что эффективное тепло не может быть красивым и оригинальным. К счастью, времена, когда дизайн должен уступить свои позиции отличной эффективности, прошли. Алюминиевые радиаторы имеют разнообразный ряд конструкций и предлагают даже самому требовательному покупателю достойный выбор. Вы можете выбрать свой собственный цвет финишного покрытия, которое идеально будет соответствовать стилю вашего дома, форма радиатора будет гармонировать с вашей домашней или офисной атмосферой на сто процентов. Жертвоприношение по стилю? Ни в коем случае, когда вы выбираете для своего дома алюминиевые радиаторы!

Нержавеющая сталь

Использование стали для производства теплообменников позволяет получить прочные изделия, которые в основном используются для систем индивидуального отопления домов и коттеджей. По причине возможности контроля качества теплоносителя и давления в системе, стальные приборы станут отличном выбором для систем автономного отопления. При условии подачи качественного теплоносителя и умеренного давления рабочей жидкости, такие устройства прослужат более 30 лет. Стальные радиаторы обладают низкой тепловой инерцией, а значит проблем с быстрым изменением температуры в помещении не возникнет. Помимо небольшой тепловой инерции, стальные радиаторы обладают и другими преимуществами:

Эффективность

Нержавеющая сталь легко проводит тепло, это делает радиатор, изготовленный из стали достаточно эффективным. Даже если вы выключите систему центрального отопления, сталь сохранит тепло в течение более длительного периода времени, чем другие материалы, так что ваш дом будет теплым еще некоторое время после. Это экономит затраты на электроэнергию.

Внешний вид

Отделка из стали имеет очень привлекательный вид и проста в обслуживании.

Цена радиаторов

Сталь не самый дешевый вариант в данный момент, так что придется заплатить внушительную сумму за стальной радиатор.

Алюминий

Наряду с биметаллическими радиаторами, один из самых популярных на сегодня тип теплообменников обладающий численными преимуществами. Теплообменники из алюминиевого сплава можно встретить практически в любых помещениях, начиная от маленьких квартир, заканчивая большими офисными помещениями. Из недостатков можно отметить склонность к внутренней коррозии, появление которой можно избежать используя специально подготовленный теплоноситель. Для радиаторов из алюминия характерны:

Качество

Алюминий совершенно не боится коррозии, так что вы не найдете лучше варианта, чем алюминиевый радиатор для установки в ванной комнате. Его качество будет радовать вас в течение многих лет.

Высокая теплопроводность

Алюминий не сравниться по эффективности отдачи тепла, ни с каким другим материалом. Алюминий обладает способностью очень быстро реагировать на изменения в обстановке, которая дает оптимальные возможности для  управления теплом в доме. Уровень комфорта в доме или офисе значительно возрастет.

Эффективность

Алюминий может излучать тепло очень быстро и эффективно. При включении системы центрального отопления, которая имеет алюминиевые радиаторы, дом или офис прогреются в очень короткий срок. Эта особенность алюминия делает его идеальным материалом для радиаторов и позволяет экономить, снижая ежемесячный счет за отопление. Из-за того, что установка алюминиевого радиатора очень легкая, то соответственно и плата за нее будет ниже.

Внешний вид

Алюминиий легко принимает сложные формы,  для того, чтобы удовлетворить самых требовательных покупателей. Также существует стандартная линейка стилей, видов и готовых цветов. Алюминий это действительно очень универсальный материал для производства  радиаторов отопления.

В этой статья приведены как преимущества, так и недостатки различных материалов для производства радиаторов, что бы вы могли подумать, какой радиатор лучше выбрать именно вам. В действительности выбор потребителя сводиться к тому, что он ставит своим первоначальным критерием, эффективность, теплоотдачу, внешний вид или цену. Стоимость, как правило, является основным фактором, когда дело доходит до установки радиатора. Поэтому выбор правильного радиатора отопления не только сохранит теплым ваш дом или офис круглый год, но и так же эстетически будет отлично смотреться.

Алюминиевые против стальных – выбираем эффективный радиатор отопления was last modified: Апрель 10th, 2017 by JenniferThompson

teplo-klimat.com

Металл который хорошо накапливает тепло, и «держит» его!

Алюминий отбросим, так как при взаимодействии с водяным паром в присутствии кислорода разлагает воду и получается гремучий газ. Материал должен выдерживать хорошее давление, больше всего мне нравится латунь. А теплопотери можно попробовать избежать, используя внешнюю термоизоляцию. И будь предельно осторожен!!!!

Посмотри таблицу удельной теплоёмкости металлов.

медь.. она самая плотная и тяжёлая из указанных металлов.. но котёл лучше всего экранировать от ОС..

Если это модель, зачем стремиться к КПД? Для безопасности лучше применить железо (достаточно СТ3 )

сделай из золота

лучше всего проводит тепло метал с высокой электрической проводимостью Золото потом медь. Удерживает тепло только вакуум.

Чугун! Так как В ссср все отопления дома изготовливались из Чугуна! <img data-big=»1″ data-lsrc=»//otvet.imgsmail.ru/download/18683558_a00e5aec1d4b1eb628f7f7570350d969_120x120.jpg» src=»//otvet.imgsmail.ru/download/18683558_a00e5aec1d4b1eb628f7f7570350d969_800.jpg»>

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта