Стабилизатор напряжения 12 вольт для светодиодов в авто своими руками видео: Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Стабилизатор тока для светодиодов своими руками

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

1. Прибор на КРЕНке 2. На двух транзисторах 3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Стабилизатор для светодиодов и ДХО

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари.
Как правило эти светодиодные лампы имеют малую мощность и ток потребления. Чем собственно говоря и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.

Чем это объясняется?


Производитель ламп пишет маркировку «12V». Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12 В, то она прослужит на максимальной яркости очень долгое время.
Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля – 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.
Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора – лампа выходит из строя от перенапряжения.
За свою практику я менял десятки таких ламп. Большая часть из них не служила и года. В конечном итоге я устал и решил поискать выход попроще.

Простой стабилизатор напряжения для светодиодов


Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.
Все что нам понадобиться:

Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Схема стабилизатора



Схема взята из даташита на микросхему L7805.

Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора для светодиодов


Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно – я вырезал простые лини обычной отверткой.
Припаиваем все элементы и все готово. В настройке не нуждается.


В роли корпуса служит термообдувка.
Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.

На этом все, светодиоды больше не выгорают. Езжу больше года и о данной проблеме забыл, чего советую и вам.

Смотрите видео сборки


Стабилизаторы для светодиодов в авто


Nissan Qashqai Племенной › Бортжурнал › Стабилизатор напряжения 12В для светодиодов своими руками

Всем читателям ПРИВЕТ! В одной из своих записей я рассказал, что поставил на автомобиль ДХО. Однако, не успел поставить стабилизатор напряжения. Для чего нужен он, да все просто.
Итак, в бортовой сети автомобиля рабочее питание составляет от 12,8 до 14,7 Вольт (на разных машинах по своему), а вот светодиоды рассчитаны на 12 вольт. Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля. Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля.

Физику светодиодов можно почитать в интернете, информации полно!

Можно было заказать с АлиЭкспресс, но я решил делать сам. Опыт был уже.
Для изготовления стабилизатора мною были приобретены следующие компоненты:
1. Стабилизатор 2шт.
2. Конденсатор 100 мкФ 16V 2 шт.
3. Конденсатор 330 мкФ 16V 2 шт.
Итог: 70₽
Провода: взял от компьютера, так как они на концах уже изолированы и идеально подходят для купленных стабилизаторов.

Выбрал схему подключения (рисунок 1). Однако, в выбранной схеме исключил диод, так как он нужен грубо говоря, когда на выходе стабилизатора напряжение будет больше, чем на входе! Но такое бывает очень редко, можно сказать никогда!

Рисунок 1 — схема стабилизатора

Полный размер

Компоненты

Полный размер

Провода-доноры

Далее пошёл процесс пайки. Оговорюсь сразу, что я не профессионал в этом деле, а любитель. Поэтому многие могут сказать, что неаккуратно сделал. Уж извиняйте))) после того, как все спаял решил засунуть в какой-нибудь корпус. И тут меня осенило, что корпус для стабилизаторов можно сделать из киндер сюрприза, благо у сына этого добра хватает))) Сделал отверстия с каждой стороны пластикового яйца и просунул провода. Выглядит все это довольно приемлемо!
Утром на стоянке проверил мультиметром входное и выходное напряжение! Все ОК.

P.S. Уважаемые читатели, не судите строго за дизайн корпуса и пайку. Главное, чтобы ВЫ поняли, для того, чтобы светодиоды на ваших машинах работали долго, надо ставить стабилизаторы. Сделать их не сложно и недолго, цена — копейки!

В будущем хочу сделать стабилизатор в виде микросхемы!

Полный размер

Думаю, вы поймёте, почему выбрал провода от компьютера

Заизолировал контакты

Сделал общий минус

Итог пайки

Итог пайки — 2

Стабилизатор в корпусе

Полный размер

Готовые стабилизаторы

Проверка — входное напряжение на стабилизатор

Полный размер

Проверил работоспособность стабилизатора на старой светодиодной ленте — ОК

Стабилизатор напряжения на 12 В для диодных ламп — KIA Ceed, 1.

6 л., 2012 года на DRIVE2

Долго решался на какой остановиться схеме, очень много вариантов и у драйвоводов, и в инете. В итоге принял следующее:
Нам понадобится:
Стабилизатор, в народе «крен» L7812сv

Крен


Конденсатор 100 микрофарад 25 В (на вход)
Конденсатор 100 микрофарад 25 В (на выход)

Необходимо 2 шт


Диод 1N4007

Обязательно соблюдать полярность


Теперь собираем схему:
Необходимо спаять две минусовые ножки конденсаторов между собой

Спаяные конденсаторы


Припаять минусы конденсаторов к минусу стабилизатора

Припаять плюсы конденсаторов к плюсам стабилизатора

Припаять катод диода к плюсу стабилизатора (на вход)

В диоде обязательно соблюдать полярность


По скольку минус у стабилизатора общий необходимо спаять два провода между собой

Припаять два минусовых провода к минусу стабилизатора (средняя ножка крена)

Для удобства припаял с обратной стороны


Припаять плюсовой провод на плюс выхода стабилизатора

Припаять второй плюсовой провод на анод диода. Одеть на диод кембрик

Да, именно плюсовой провод на минусовую ножку диода


Изолируем ножки стабилизатора (крена)

Одеть разрезанный кембрик


Одеть термоусадочную трубку на всю схему

Все стабилизатор готов, идем проверять к машине.
При заглушенном двигателе напряжение в сети 12,75 В

Заводимся, напряжение в сети 14,83 В

Напряжение в сети через стабилизатор 12,11 В

Давал нагрузку включая и выключая разные потребители, напряжение остается стабильным без скачков (которых и боятся диодные лампы).
В верхнее отверстие стабилизатора можно прикрутить алюминиевую пластину, которая будет являться дополнительным радиатором для отвода тепла.
Такой стабилизатор напряжения нужен на каждую диодную лампочку.
Ссылки:
xn—-7sbbil6bsrpx.xn--p1…B8%D0%BE%D0%B4%D0%BD.html
www.drive2.ru/l/1897660/
www.drive2.ru/l/4899916394579178551/
Цена вопроса:
— стабилизатор (крен) 4 грн;
— конденсатор 100 мкф 0,35 грн х 2 шт=0,70 грн;
— диод 0,20 грн;
— провода 1 м на «+» и 1 м на «-«.
По 1,50 грн/м=3 грн.
Итого: 7,90 грн.
Всем удачи.

Стабилизатор для светодиодов и ДХО

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари.
Как правило эти светодиодные лампы имеют малую мощность и ток потребления. Чем собственно говоря и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.

Чем это объясняется?


Производитель ламп пишет маркировку «12V». Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12 В, то она прослужит на максимальной яркости очень долгое время.
Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля – 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.
Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора – лампа выходит из строя от перенапряжения.
За свою практику я менял десятки таких ламп. Большая часть из них не служила и года. В конечном итоге я устал и решил поискать выход попроще.

Простой стабилизатор напряжения для светодиодов


Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.
Все что нам понадобиться:

Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Схема стабилизатора



Схема взята из даташита на микросхему L7805.

Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора для светодиодов


Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно – я вырезал простые лини обычной отверткой.
Припаиваем все элементы и все готово. В настройке не нуждается.


В роли корпуса служит термообдувка.
Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.

На этом все, светодиоды больше не выгорают. Езжу больше года и о данной проблеме забыл, чего советую и вам.

Смотрите видео сборки


Hyundai Solaris Hatchback Tenebris › Бортжурнал › Решение проблемы перегорающих светодиодов.

Стабилизация напряжения бортовой сети

Увы, бортовая сеть автомобилей B-класса редко подготовлена должным образом для светодиодного освещения. Изложенное ниже является еще одной возможной вариацией решения проблемы сгорающих светодиодных ламп.

Наверняка каждый автовладелец Hyundai Solaris если и не из личного опыта, то со слов других знаком с проблемой постоянно перегорающих светодиодных ламп. К сожалению, штатно нашему автомобилю не полагаются диодные лампы, а значит и бортовая сеть на них не рассчитана. Я лично столкнулся с этой проблемой после установки диодной подсветки заднего номера.

Суть проблемы
На рынке автоэлектрики уже довольно давно изобилуют светодиодные лампы самых разных мощностей под разные цоколи и цели, ассортимент постоянно расширяется, но, увы, это не сильно влияет на качество самих ламп и их адаптацию под автомобили с повышенным напряжением бортовой сети.

Выгоревшие и выгорающие светодиоды в лампе с цоколем T10 (габариты, задний ход, подсветка номера)

Основных причин, по которым светодиодные лампы сначала начинают мерцать, а потом и вовсе сгорают, три:
1. Некачественная пропайка контактов, что приводит к перегреву и выгоранию. Решить эту проблему можно самому подручными средствами (хотя зачастую перепаивание контактов оказывается лишь временной мерой) или просто искать более качественную продукцию от европейских производителей. Всё чаще на рынке встречаются светодиодные лампы с микроконтроллерами, стабилизирующими напряжение. Такие, например, я ставил себе в задний ход.
2. Повышенная температура окружающей среды. Высокая температура может быть вызвана особенностью расположение ламп в осветительном приборе и непосредственной близостью к источнику большого тепла, такого как, например, галогеновая лампа головного света или двигатель. Например, в нелинзованной фаре Hyundai Solaris габаритная лампа близко соседствует с бигалогеновой лампой головного света. При этом температура внутри фары вблизи лампы достигает 90 градусов, что губительно для диодов. Решением такой проблемы может стать только использование термостойких сравнительно дорогих COB-диодов или же термоизоляция от лампы головного света, что крайне сложно реализовать.
3. Повышенное напряжение бортовой сети. Как известно, чем свежее (новее) аккумулятор, тем выше на нём напряжение. На моём годовалом аккумуляторе напряжение 12,75 В, а при запущенном двигате

Простой стабилизатор для светодиодов в авто – Поделки для авто

Светодиоды не любят колебания напряжения, это факт. Не любят они это по причине того, что светодиоды ведут себя не так как лампы или другие линейные приборы. Их ток меняется в зависимости от напряжения нелинейно, поэтому например двухкратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза. Из за чего они перегреваются, быстро деградируют и выходят из строя.

Большинство диодов, применяемых в автомобиле, имеют встроенное сопротивление, которое рассчитано на напряжение 12 вольт. Но напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), плюс ко всему оно далеко не такое стабильное, как хотелось бы. Если использовать недорогие китайские диодные приборы в автомобиле без предварительной их стабилизации то они достаточно быстро начнут мигать а затем и вовсе перестанут светить.

Вот и я столкнулся с такой проблемой — светодиоды в габаритах начали мигать, так как я когда-то поленился их стабилизировать.

Существует множество готовых схем-стабилизаторов для 12-вольтовых приборов. Чаще всего на прилавках можно найти микросхему КР142ЕН8Б или подобные ей. Данная микросхема расчитана на ток до 1.5А, но для большего эффекта нужно включение с применением входных и выходных конденсаторов.

Стандартная схема предполагает применение 0.33 и 0.033мкФ конденсаторов (если память не изменяет). Но лично я решил сделать включение с применением 4-х конденсаторов: 470мкФ и 0.47мкФ на вход и соответственно в 10 раз меньшая емкость на выход. Я уже не помню, но где-то на форумах я встречал именно такое включение, решил его применить.

Чтобы все это можно было легко внедрить в авто, я решил напаять все элементы непосредственно на микросхему.

Микросхема с элементами

Микросхема с элементами

К микросхеме припаяны, помимо конденсаторов, два провода, соответственно вход и выход. Масса будет приходить через крепление микросхемы. Средняя нога микросхемы задействована только под ножки конденсаторов. Выводить провод от нее я не стал, так как она объединена с корпусом схемы.
Для прочности всей конструкции я решил залить все это клеем, затем завернуть в термоусадку.

Микросхемы

Микросхема и термоусадка

Готовые стабилизаторы

В автомобиле можно крепить через саморез к кузову.

Прикрепленный стабилизатор

Пост не претендует на что-то супер-мега технологичное, но мало ли кому может пригодиться 🙂

Схема включения

Вместо КР142ЕН8Б можно использовать L7812CV, схема включения аналогичная. Если взглянуть на стандартную схему и сравнить с моей то возникают вопросы “зачем именно такие емкости?”.

Поясняю: штатная схема включения подразумевает только стабилизацию напряжения, но никак не спасает от просадки (кратковременной) напряжения, поэтому в схему были введены электролиты достаточно большой емкости для сглаживания таких просадок.

По идее конечно АКБ в машине должен выполнить роль фильтра просадок напряжения, но иногда случаются просадки, которые АКБ просто не успевает уловить. Например при подаче искры на свечу зажигания через катушку проходит нехилый ток, который отлично просаживает напряжение в бортсети.

Автор; Максим Ярошенко

Похожие статьи:

Стабилизатор НАПРЯЖЕНИЯ для светодиодов — DRIVE2

Светодиод это полупроводниковый прибор достаточно нежный: при выходе за пределы номинальных значений практически любого из его параметров сокращается его жизнь или он выходит из строя. Основной и самый важный параметр светодиода это его номинальной рабочий ток. Если он ниже, то светодиод просто теряет в яркости до порога запирания, а вот если он больше номинального — то светодиод может выйти из строя.

В самом простом варианте для ограничения тока используют токоограничительные сопротивления — резисторы, но при работе от нестабильной по напряжению бортовой сети автомобиля добиться номинального тока через светодиод сложно. Если используется один или несколько светодиодов, то проблема решается просто подбором сопротивления под самое большое напряжение бортовой сети, а вот если их много… Для стабилизации в таких случаях многие применяют линейные стабилизаторы напряжения. Это один из вариантов стабилизации, помимо применение стабилизатора тока. И многие здесь делают ошибки.

У трехножечного стабилизатора есть основные условия нормальной работы: это падение напряжение между входом и выходом и ток. Если подключить 12-ти вольтовый стабилизатор, то нормально он работать не будет, ибо минимальное входное напряжение у него 14.5 Вольта. Получится только ограничитель напряжения при скачках напряжения на входе. Если например гена не заряжает аккум, то напряжение на выходе будет далеко не 12 Вольт.

Оптимальный здесь будет применения стабилизатора на 8 Вольт. У него минимальное напряжение на входе 10.5 Вольта, что перекрывает весь рабочий диапазон напряжений борт. сети.

Если применять стабилизаторы на меньшее напряжение, то пропорционально уменьшению напряжения стабилизации на выходе увеличивается количество выделяемого тепла стабилизатором, что накладывает ограничение по току нагрузки. Короче говоря чем больше разница между входом и выходом стабилизатора, тем он больше греется при одном и том же токе нагрузки.

Лучше всего подходят для стабилизации напряжения ШИМ — DC-DC преобразователи напряжения, которые имеют высокий КПД и выделяют очень мало тепла, соответсвенно позволяют подключать намного большие токи нагрузки, чем простые стабилизаторы. Примеры таких стабилизаторов есть у krasherа

Ещё лучше использовать не стабилизатор напряжения а стабилизатор тока. Хотя я считаю, что стабилизатор тока актуален только при подключении единичных мощных светодиодов — без него никуда, а для стабилизации гирлянд мелких светодиодов стабилизатор напряжения ни чем не уступает стабилизатору тока.

Неправильная схема. Применять стабилизаторы тока или ещё хуже напряжения так нельзя! Любое отклонение падение напряжения одного из светодиодов приведет в нарушению токов во всех цепях. Например, если напряжение падения у светодиода LED2 уменьшится, то это вызовет большой протекающий ток через LED1,LED2,LED3, светодиоды этой цепи перегорят, что вызовет больший протекающий ток через остальные светодиоды.

Неправильная схема. Применять одно токоограничивающее сопротивление не рекомендуется. Будет перекос тока среди линий светодиодов, да и на резисторе будет выделяться много тепла. Схема на практике работать будет, но срок службы сократится однозначно.

Правильная схема. Токоограничительные сопр

ЗАЗ 1103 Славуталёт › Бортжурнал › Стабилизаторы напряжения 12В в автомобиль для светодиодов, ДХО.

Решил я сделать стабилизаторы напряжения 12В для светодиодов, диодных лент, габаритов, ДХО(Дневных ходовых огней) в автомобиль.

Так они вглядят


Светодиоды не любят колебания напряжения. Их ток меняется в зависимости от напряжения нелинейно, двукратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза, из за чего они быстро выходят из строя.

ДХО

Большинство диодов, в автомобиле, имеют встроенное сопротивление, рассчитанное на 12 вольт. Напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), оно далеко не такое стабильное, как хотелось бы. Если использовать китайские диодные приборы без предварительной стабилизации, то они быстро начнут мигать а затем перегорят.

Габариты

С данным стабилизатором напряжение в сети не будет подниматься выше 12В, что обеспечит долговечность китайских ходовых огней на светодиодах, китайских диодных лент, светодиодов габаритных, и обычных светодиодов. На данный момент я поставил на передние габариты и на подсветку под капотом один стабилизатор, один стабилизатор на освещение в салоне и один на освещение в багажном отделении!

Светодиодные ленты в салон и внешнее освещение авто.

Подключать много потребителей на один стабилизатор было бы не правильно! Чем больше потребителей и больше напряжение, тем больше он греется, далее я написал подробнее про установку и использование.
Кто не желает играться с пайкой или нет возможности достать детали для пайки и спаять по схемам из интернета, тот может заказать их просто у меня по цене 40 грн за штуку. Отправка УкрПочтой +10грн, НовойПочтой +25 грн.
Укр почтой конечно же будет дешевле, но доставка чуть дольше, чем Новой почтой, номер посылки отправляю, её можно отслеживать по Украине без проблем! При большом заказе цена на доставку понятное дело может немного возрасти. Делаю под заказ!
Установка:
устанавливать стабилизатор необходимо после предохранителей, жёлтым цветом на входящий плюс, красным(с уже стабилизированным напряжением не выше 12В) на провод идущий к диодам, и чёрным на массу автомобиля (минус аккумулятора.). В процессе работы стабилизатор может нагреваться до 65 градусов. Его можно крепить на корпус автомобиля, причём тело крепления является массой(минусом) как и чёрный провод выходящий из стабилизатора! Не стоит крепить на легкоплавкие предметы, а так же в местах подверженных заливанию водой.
Характеристики:
Данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А.
Доставка осуществляется любыми транспортными компаниями по Украине. Перед покупкой уточните наличие товара. Цена указана за 1 штуку. Внешний вид товара может незначительно отличаться от того что на фото, по цвету термоусадок, цвету кабеля и т д. на работоспособность и выполнение обязанностей стабилизатора это не влияет.

Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов — Автоблоги

Всем привет!

Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.

Часть 1. Предисловие

Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.

Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.

По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.

Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.

Поэтому, в «правильные» светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:

1. Дешевые автомобильные светодиодные лампы на 12 В.

Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания. Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.

Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы напряжения, которые защитят лампы от скачков напряжения в бортовой сети автомобиля и подадут на лампы стабильные 12В. Однако, такой способ имеет ряд существенных недостатков:

Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.

Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.

Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.

Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.

Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.

Часть 2. Немного теории

Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.

Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):

2. Типовая схема светодиодной лампы без стабилизатора, на 9 светодиодов

Обозначение элементов на схеме, слева направо:

R0: Резистор-обманка для систем контроля исправности ламп. О нем я, возможно, сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет. I0 — ток через резистор R0.

VDS1: Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.

R1-R3: Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.

HL1.1-HL1.3: Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.

I1-I3: ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.

Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:

3. Упрощенная схема светодиодной лампы с одним токоограничивающим резистором

От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.

Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока

Для доработки ламп понадобятся:

1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.
2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.

Пример 1: Цилиндрические лампы типа C5W или C10W

Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):

4. Отпаиваем контактные колпачки

На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).

5. Элементы светодиодной лампы

Для сравнения, на фото 6 приведена более «правильная» лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:

6. Внизу лампа с тремя токоограничивающими резисторами, вверху — с одним

На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:

7. Лампа с COB-матрицей

Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.

Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:

Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.

Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.

Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.

Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.

На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):

8. Впаиваем резистор с увеличенным сопротивлением.

Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:

9. Для ламп подсветки номера, сопротивление штатного резистора увеличено в 7 раз

Пример 2. Бесцокольные лампы T10 W5W

Отгибаем контактные усики и разбираем лампу (фото 10):

10. Светодиодная лампа T10 W5W с несколькими светодиодами SMD

Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):

11. Примитивная конструкция с одним резистором

Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):

12. Лампа T10 W5W с одним мощным светодиодом

Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):

13. Для меньшего нагрева, использовано два резистора вместо одного

Пример 3. Малогабаритные лампы T5 для приборной панели

Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):

14. Лампы для приборной панели

15. Один светодиод и один резистор

Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.

Часть 4. Некоторые практические советы

Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):

16. Запаять деталь другого размера не всегда возможно

Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):

17. При работе феном, прикрывайте соседние детали от горячего воздуха

Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.

18. Для более надежной пайки колпачков, можно добавить припой на контактные пятачки

Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):

19. Рекомендую удалить декоративные стекла с матриц COB

И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись «КОЛЯ», нанесенная промышленным способом? (фото 20):

20. И в Китае есть свои Коли 🙂

Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.

Источник

Линейный стабилизатор для светодиодных ламп на авто

Итак, почему же так быстро перегорают габаритные, светодиодные лампочки или другие светодиодные лампочки, которые стоят в автомобиле, потому что в них используется в качестве драйвера обычный токоограничивающий резистор.

Как правило, светодиодные световые приборы, мощностью от 10 Вт и выше используют уже качественный импульсный стабилизатор — драйвер и такой болезнью не страдают в отличие от габаритных, дешевых светодиодных ламп.

Сначала эти лампочки начинают мерцать, то есть это уже первые признаки деградация кристалла, ну и потом они попросту перегорают. В среднем простой, светодиодной лампочки продолжительность жизни составляет один год, где-то меньше, где-то чуть больше.

Почему же так происходит?

А происходит это потому, что данный токоограничивающий резистор рассчитывается по специализированной формуле, (таких калькуляторов онлайн много в интернете) и подключается на соответствующие напряжение.

И вот тут производитель очень хитро делает, на некоторых цоколях написано 12 вольт,то есть токоограничивающий резистор для данной лампочки заточен под 12 вольт. А в автомобильной цепи, как мы знаем напряжение бывает не только 12 вольт, а доходит и до 14.5 вольт. То есть из этого делаем вывод, что светодиодная лампочка при 12 вольтах уже работает на максимальной мощности, а уже более 12 вольт идёт сильный износ кристалла светодиода, одним словом сильный перегруз.

Так, как же сделать так, чтобы они у нас не перегорали, я тоже в своё время замучился их менять, поэтому и решил этот вопрос изучить досконально и сделать преобразователь при котором светодиодная лампочка становилась практически вечной.

Есть конечно на али экспрессе такие преобразователи, которые уже рассчитаны для этих целей, но есть одно НО…. они выдают высокочастотные импульсные помехи, но это присуще всем импульсным источникам питания. Это даёт большие наводки, например, при использовании FM модуляторов, особенно при прослушивании радио, да даже просто наводки в акустическую систему, с этой точки зрения нужно стараться, как можно меньше наполнять свой автомобиль импульсными источниками питания.

Поэтому мы будем с вами делать линейный стабилизатор с фиксированным напряжением, который имеет большие преимущества. Первое достоинство — он стоит сущие копейки по сравнению с импульсными. Второе, то что стабилизатор линейный и не даёт вообще никаких помех и высокочастотных наводок.

Для этого нам понадобится, сам стабилизатор L7812cv,он у нас будет рассчитан на 1.5 Ампера и пара конденсаторов на 100 n.

Сама схема довольно простая, я даже сказал бы очень простая и собрать ее сможет любой автолюбитель.Левая нога — это плюсовой вход (от 12 до 30 вольт), а правая уже стабильный плюсовой 12-ти вольтовый выход. Минус общий. То есть стабилизатор можно подключать в разрыв плюсового провода, который идёт к лампочке или ДХО.

Два конденсатора, которые стоят в схеме, это своеобразный фильтр, если вы никогда этим не занимались, то ими можно пренебречь, то есть попросту не ставить.

Вот готовый вариант как это сделал я.Запаял всё на плате и засунул в термоусадку, чтобы ничего нигде не замыкало, получилась практически вечная конструкция.

Были у меня остатки заготовок от печатных плат, из этих отходов и собрал.

Да.., сам стабилизатор закрепил через термоскотч на плату,если у вас нет термоскотча, советую стабилизатор поставить на радиатор, чтобы он не перегревался, так надёжней.
Вот такой я использовал термоскотч, очень хорошая и полезная вещь, чтобы не заморачиваться со всякими термопастами и так далее. Для тех, кто захочет приобрести вот ссылка http://ali.pub/27tn5c.

—Также даю ссылку на сам стабилизатор http://ali.pub/27tmdj
—И контактные колодки http://ali.pub/27tnev.

Вы соответственно монтаж сделаете как вам будет угодно, на макетной плате или навесным монтажом, от этого качество стабилизатора не пострадает.

Сделали один раз, поставили и не будет у вас теперь проблем с перегоревшими или мигающими светодиодными лампами. Всего вам доброго.

Простой стабилизатор тока на 12В для светодиодов в авто

Важнейшим параметром питания любого светодиода является ток. При подключении светодиода в авто, необходимый ток можно задать с помощью резистора. В этом случае резистор рассчитывается исходя из максимального напряжения бортовой сети (14,5В). Отрицательной стороной данного подключения является свечение светодиода не на полную яркость при напряжении в бортовой сети автомобиля ниже максимального значения.

Более правильным способом является подключение светодиода через стабилизатор тока (драйвер). По сравнению с токоограничивающим резистором, стабилизатор тока обладает более высоким КПД и способен обеспечить светодиод необходимым током как при максимальном, так и при пониженном напряжении в бортовой сети автомобиля. Наиболее надежными и простыми в сборке являются стабилизаторы на базе специализированных интегральных микросхем (ИМ).

Стабилизатор на LM317

Трёхвыводной регулируемый стабилизатор lm317 идеально подходит для конструирования несложных источников питания, которые применяются в самых разнообразных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема токового драйвера на lm317 для автомобиля представлена на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор. Помимо данной схемы, существует множество других, более сложных схемотехнических решений для построения драйверов с применением множества электронных компонентов. Детальное описание, принцип действия, расчеты и выбор элементов двух самых популярных схем на lm317 можно найти в данной статье.

Главные достоинства линейных стабилизаторов, построенных на базе lm317, простота сборки и дешевизна используемых в обвязке компонентов. Розничная цена самого ИС составляет не более 1$, а готовая схема драйвера не нуждается в наладке. Достаточно замерить мультиметром выходной ток, чтобы убедиться в его соответствии с расчётными данными.

К недостаткам ИМ lm317 можно отнести сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость в отводе тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие под болтовое соединение с радиатором. Также недостатком приведенной схемы можно считать максимальный выходной ток , не более 1,5 А, что устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать путём параллельного включения нескольких стабилизаторов тока или использовать вместо lm317 микросхему lm338 или lm350, которые рассчитаны на более высокие токи нагрузки.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Стоит подчеркнуть важность наличия конденсатора на входе, без которого ИМ PT4115 при первом же включении выйдет из строя.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

Стабилизатор напряжения для светодиодов в авто своими руками

Задумался я о том, чтобы установить на задние фары светодиоды. И решил сделать стабилизатор для светодиодов. Но главное – хотел «габарит» и «стоп-сигнал» совместить в один рабочий модуль. Тогда при работе габаритов он горел бы в половинную силу, а в режиме «стоп» – светился со всей яркостью.

Оптимальным вариантом для своей задумки посчитал создание схемы на базе простого стабилизатора напряжения, с микросхемой LM 2596.

Ниже на фото видите стабилизатор и его схему.

Как сделать стабилизатор двухрежимным:

— доработать схему стабилизатора, как показано на картинке. — Разработать печатку. — Изготовить плату. Для этого использовать метод лут. — Сделать распечатку на листе бумаги, а затем перевести на фольгированный текстолит. — Протравить, напаять все необходимые детали. — Получили стабилизатор, работающий в двух режимах.

Осталось его настроить. Для этого следует включить стабилизатор в положение «габарит» и, используя резистор R1, отрегулировать яркость свечения.

Переключить во второе положение – «стоп», и повторить предыдущие действия, но при этом необходимо задействовать резистор R2.

Вот, как это выглядит.

Печатка; скачать…

Автор; Олег Шарин,   г.Пермь

Как подключить аксессуары к тележке для гольфа Аксессуары — поиск 12 вольт

Как подключить и установить электрические аксессуары —

 

Большинство аксессуаров, которые мы продаем, рассчитаны только на входное напряжение 12 вольт. Однако при наличии соответствующих деталей вы сможете установить эти аксессуары на электрические или газовые гольф-кары на 12, 24, 36 и 48 вольт. Большинство принадлежностей, которые мы продаем, снабжены схемой подключения, которая поможет вам в процессе установки.Ниже мы изложим некоторые меры предосторожности, чтобы приобретенные вами аксессуары работали правильно.

 

(12 В) ГАЗОВЫЕ ТЕЛЕЖКИ ДЛЯ ГОЛЬФА-

  • Всегда сначала присоединяйте заземляющий провод либо к раме, либо к отрицательному выводу соленоида, либо к отрицательному выводу 12-вольтовой батареи.
  • После того, как вы подключили провод заземления, подключите положительную клемму провода к положительному контакту аккумулятора.

(24 И 36 В) ЭЛЕКТРИЧЕСКИЕ ТЕЛЕЖКИ ДЛЯ ГОЛЬФА-

 

  • Один из способов установки аксессуара на 12 вольт потребует от вас найти 12 вольт в вашей системе.Ниже мы прикрепили фотографии, показывающие, как это работает (ПРИМЕЧАНИЕ: все изображенные батареи рассчитаны на 6 вольт)
  • .
  • Другой способ подключить 12-вольтовый аксессуар к вашей 36-вольтовой системе потребует от вас покупки редуктора напряжения. Это берет комбинированное напряжение или весь ваш аккумулятор и уменьшает его до 12 вольт. Установка редуктора напряжения продлит срок службы всей аккумуляторной батареи.

(48 В) ЭЛЕКТРИЧЕСКИЕ ТЕЛЕЖКИ ДЛЯ ГОЛЬФА-

 

  • Все гольф-кары Club Car, EZGO и Yamaha на 48 вольт требуют установки редуктора напряжения.Если вы планируете установить свет, радио, вентилятор или любые другие аксессуары на 12 вольт; потребуется редуктор напряжения (VOLT-2000).
  • Обратите внимание, что некоторые новые тележки имеют (4) 12-вольтовые батареи, что позволяет вам подключить одну из них в этой серии.

 

Не стесняйтесь обращаться в службу поддержки клиентов по телефону 1-(855)-349-4653 или обращаться к нам, если у вас есть какие-либо вопросы относительно этой информации.

Светодиодные ленты на 12 В: питание и проводка

Светодиодные ленты

стали быстрым и эффективным решением для создания акцентного освещения вокруг вашего дома. Относительно недорогим вариантом является низковольтная 12-вольтовая светодиодная лента. Эти отдельные полосы иногда называют светодиодными лентами или гибкими светодиодными лентами, имея в виду легкость, с которой они формируются на любой поверхности, обеспечивая мягкий, гладкий акцентирующий свет. Низкая потребляемая мощность 12 В постоянного тока позволяет им работать с эффективной скоростью, а светодиоды 5050 обеспечивают охлаждение и безопасность при работе в ограниченном пространстве. Все эти факторы делают светодиодные ленты на 12 В такими отличными для освещения под шкафами, акцентного освещения, освещения книжных полок, рабочего освещения, освещения бухты и многого другого.Поскольку они питаются от 12 В постоянного тока, они также популярны в автомобилях и лодках. В этом посте мы рассмотрим, как убедиться, что вы правильно питаете свои светодиодные ленты, и различные способы подключения ваших лент, чтобы обеспечить наилучшую настройку светодиодного освещения.

Основные сведения о гибких светодиодных лентах на 12 В

Их название говорит само за себя, эти ленты имеют гибкую линейную основу, которая удерживает 5050 светодиодов.

5050 — это просто размер/тип светодиода. Это обычный размер для светодиодных лент, они большие и яркие, но при этом не нагреваются.3528 — еще один распространенный тип светодиодов, используемых в светодиодных лентах, я бы их избегал, так как они намного меньше и тусклее. Любой больше, чем 5050, и освещение становится намного дороже и работает намного горячее, привнося в смесь радиатор и контроль температуры.

Эти гибкие светодиодные ленты имеют естественный белый цвет: 3000K (теплый белый), 4000K (нейтральный белый) и 6500K (холодный белый). Цветные светодиодные ленты также доступны в красном, желтом, зеленом, синем и RGB (изменяющем цвет). Для получения дополнительной информации об основах гибких полос 12 В, проверьте здесь.

У тех, кто выбирает белые светодиодные ленты, есть выбор между двумя вариантами плотности. Плотность — это просто количество светодиодов на расстоянии вдоль полосы. Ленты стандартной плотности имеют 30 светодиодов на метр (150 на катушку), которые излучают около 540 люмен на метр. Лента высокой плотности удваивает этот показатель благодаря 60 светодиодам на метр (300 на катушку) и дает 1080 люмен на метр! Те, кто ищет самый яркий свет, который они могут получить для рабочего освещения, обязательно должны выбрать высокую плотность, поскольку они значительно ярче.Однако для акцентного освещения обычно требуется просто мягкое свечение, и именно здесь вы можете использовать стандартную плотность, поскольку они стоят дешевле и не будут слишком подавляющими. ПРИМЕЧАНИЕ , что полосы высокой плотности будут работать при более высокой мощности, но мы рассмотрим питание ниже.

Светодиодные ленты

12 В поставляются в катушках по 16,4 фута (5 м). Здесь, в LEDSupply, мы предлагаем меньшие длины 3, 6, 9 и 12 футов. Полоски можно легко обрезать до нужного размера, так как на них имеются метки для разреза и площадки для пайки через каждые 4 дюйма для стандартной плотности и каждые 2 дюйма для высокой плотности.Вот простой пример того, как нарезать полосы нестандартной длины и добавить соединители, чтобы соединить полосы вместе.

Легкие гибкие полоски легко монтируются, так как они снабжены клейкой лентой, которая будет прилипать к вашей поверхности, плоской или круглой. Они также покрыты силиконовым покрытием для защиты от воды. Использование 12-вольтовых светодиодных лент сократит время установки и общую стоимость вашего проекта. Вероятно, две самые большие проблемы, с которыми сталкиваются люди, это (1) незнание источника питания какой мощности купить, или (2) как подключить несколько полосок вместе или обратно к одному и тому же источнику питания. Ниже мы рассмотрим некоторые передовые методы питания светодиодных лент.

Питание светодиодных лент

Для этих планок требуется постоянный вход 12 В постоянного тока. Единственное, что вам нужно знать при поиске источника питания для светодиодных лент, — это мощность. В приведенных ниже характеристиках указана мощность как для стандартных, так и для ленточных ламп высокой плотности. Это поможет вам легко определить мощность вашей системы, а затем выбрать соответствующий блок питания.

Длина (фут.) Длина (м) 30 светодиодов / M
Ваттность
60 светодиодов / M
Ваттность
1 0,3048 2,4 4,8
2 2 0.6096 4.8 9.6
3
7.2 7.2 7.2 14.4
6 1,8288 12.15 20.8
9 2,7432 22,05 33,6
12 3,6576 22,05 33,6
16.4 (полных) 5 27 40

Расчет мощности, пример № 1:  Представьте, что у вас есть длина около 20 футов, которую вам нужно покрыть за один проход полосами стандартной плотности. Этого можно достичь, используя полную катушку, а затем добавив 4 дополнительных фута с помощью разъема без зазоров.Используя приведенную выше таблицу, мы можем найти это.

Вт = мощность полного рулона (стандарт) + 3 фута. Мощность + 1 фут. Мощность

Мощность = 27 Вт + 7,2 + 2,4

Мощность = 36,6 Вт

Обычно вы хотите обеспечить некоторую амортизацию между вашей мощностью и номинальной мощностью источника питания. С этим приложением вы должны найти источник питания 12 В мощностью не менее 40 Вт.

Расчет мощности, пример № 2:  Предположим, вы хотите использовать 18 футов светодиодных лент высокой плотности для другого приложения.

Вт = полная катушка (высокая плотность) x 2 фута. Мощность

Мощность = 40 + 9,6

Вт = 49,6 Вт

Для этого приложения я бы остановился на блоке питания мощностью не менее 50 Вт. Помните, что мы хотим дать блоку питания небольшую амортизацию, чтобы вам было безопаснее выбирать блок питания мощностью 60 Вт.

Опции блока питания светодиодов

Первый вариант — использовать подключаемый блок питания. Блоки питания Wall Wart или настольные блоки питания подключаются непосредственно к сетевой розетке и снижают линейное напряжение до 12 В постоянного тока для полосок.Это удобно для небольших приложений или в местах, где у вас есть скрытая розетка, которая не мешает. Это, безусловно, упрощает проводку, так как вы просто подключаете и не подключаете провода непосредственно к основным линиям.

Это подводит нас ко второму варианту, проводному источнику питания, который подключается напрямую к линиям 120 В переменного тока, а затем выводит безопасное низкое напряжение постоянного тока на ваши полоски. Эти блоки питания обычно имеют более дискретные размеры, и их гораздо проще спрятать в стенах или в любом другом месте.К этой категории обычно относятся блоки питания с открытой рамой и корпусом, которые очень удобны благодаря своим винтовым клеммным портам для легкого подключения и множеству портов. Это, безусловно, более профессиональный вид, чем просто подключение прямо к стене, но вам потребуется, чтобы основные линии были легко доступны для ваших источников света.

Подключение светодиодных лент к блоку питания

Подключить стрипы к источнику питания довольно просто, он просто меняется в зависимости от вашего источника питания и тому подобного.Для тех, кто использует штепсельный источник питания, выходное соединение обычно представляет собой штекер 2,1 мм. К счастью, полные катушки с полосками поставляются с 2,1-мм гнездовой вилкой для бесшовного соединения, если у вас более короткая длина, вы можете использовать винтовые клеммные соединители ниже.

С проводными блоками питания все немного по-другому, так как у них провода отходят, а нет прямых вилок. Если на вашей полосе есть гнездо 2,1 мм, возможно, проще всего подключить разъем с винтовой клеммой (2.1 штекер) к выходным проводам блока питания, чтобы можно было выполнить надежное подключение. У вас также есть возможность отрезать разъем от полосы и просто соединить провода с помощью пайки или проволочных гаек.

Как подключить несколько полосок к одному источнику питания

Подключение нескольких полос к одному источнику приводит к зацикливанию проекта, поскольку обычно имеется только одно подключение к источнику питания. Блоки питания Open Frame Power с корпусом отлично подходят для использования нескольких полос, поскольку они имеют два канала с терминальными портами, в каждый из которых может входить несколько полос.

Если вам нужно использовать штекерный стиль, то я бы предложил подключить обе ваши ленты к разветвителю светодиодной ленты, который затем будет легко подключаться к штекеру блока питания. Кабели-разветвители светодиодных лент имеют до 4 выходов, поэтому вы потенциально можете иметь 4 ленты, плавно работающие от одного подключения к источнику питания!

При жестком подключении полосок вам просто нужно будет сделать прочные соединения между всеми проводами полоски и выходными проводами источника питания. Это можно сделать с помощью проволочных гаек или подключить все полосы к общему положительному и отрицательному проводу, чтобы вы могли выполнить соединение один к одному с проводным источником питания.

Падение напряжения и как его избежать

Очень важным соображением, которое обычно упускают из виду при использовании этих гибких полос, является эффект падения напряжения. В цепях постоянного тока напряжение будет постепенно уменьшаться по мере прохождения по проводу (или светодиодной ленте). Проще говоря, с каждым футом провода доступное напряжение на каждом футе падает по длине провода.Это повлияет на полосы стандартной плотности, которые хотят идти длиннее, чем 32 фута, и полосы высокой плотности, которые хотят идти длиннее, чем полная катушка (16,4 фута). Если вы выберете длину, превышающую эти значения, это повлияет на полоски и они не будут работать должным образом, поэтому вы не сможете соединять полоски длиннее 32 для стандартной плотности и 16,4 для высокой плотности.

Чтобы предотвратить падение напряжения, вам нужно будет разделить длинные светодиодные ленты на более короткие отрезки. Затем более короткие отрезки можно подключить параллельно от источника питания.Есть несколько различных способов сделать это, давайте взглянем на различные настройки проводки ниже.

Проводка № 1: Несколько параллельных цепей полосовых огней

Вы хотите установить непрерывную полосу светодиодных лент длиной 60 футов под барной стойкой для акцентного освещения. Поскольку самая длинная пробежка, которую вы можете сделать, составляет 32 фута, вам нужно будет разделить ее как минимум на 2 длины. Чтобы сделать две равные части, вы должны запустить две полосы по 30 футов каждая. Запустите первую полосу прямо от источника питания.Проложите параллельный набор проводов до точки, где заканчивается первая полоса, чтобы подать питание на вторую полосу.

Проводка № 2: источник питания в среднем подходе

Это отличный подход, если вы каким-то образом можете разместить источник питания в середине длинной полосы, которую вам нужно запустить. Таким образом, он сокращает лишнюю длину провода, поскольку вы можете разделить его пополам и просто запустить обе полосы в противоположных направлениях прямо от источника.

Проводка № 3: использование нескольких источников питания

Иногда вместо того, чтобы прокладывать длинные провода и разделять провода, идущие от блока питания, клиенты предпочитают использовать отдельные блоки питания в разных зонах.Это прекрасно работает, если вы можете подавать питание в определенные места, которые вам понадобятся, но это сложная часть.

Полезные детали для подключения светодиодных лент к источнику питания

Это должно помочь вам настроить светодиодные ленты с правильной прокладкой проводки и источником питания. Как всегда, мы хотели оставить вам несколько полезных деталей, которые действительно сделают соединение полос вместе намного проще.

Разветвители светодиодных лент

: эти светодиодные Y-образные разъемы позволяют подключить один источник питания и подключить к нему несколько светодиодных лент с помощью простого штекерного соединения.Они доступны в вариантах RGB и одного цвета и доступны с двумя, тремя и четырьмя выходными соединениями.

Соединители с винтовыми клеммами

: эти небольшие соединители очень удобны, когда вам нужно сделать прочные соединения между двумя наборами проводов. Рядом с мужским и женским концами завинтите проводные соединения для обоих и легко подключите. Также работает, когда вам нужно перейти от провода к какой-либо вилке 2,1 или 2,5 мм.

Разъемы для светодиодных лент EZ Clip: эти разъемы защелкиваются прямо на концах лент в том месте, где вы их обрезаете.Существуют варианты «полоса к полосе» или «полоса к проводу». Это позволяет легко соединять светодиодные ленты или добавлять зазоры в установку без пайки.

Старомодный способ: выломайте паяльник и проволоку и выполните эти соединения, как мы делаем здесь.

3 Объяснение простых схем контроллера скорости двигателя постоянного тока

Схема, которая позволяет пользователю линейно управлять скоростью подключенного двигателя путем вращения присоединенного потенциометра, называется схемой контроллера скорости двигателя.

Здесь представлены 3 простые схемы регулятора скорости для двигателей постоянного тока, одна с использованием MOSFET IRF540, вторая с использованием IC 555 и третья концепция с IC 556 с обработкой крутящего момента.

Схема №1: регулятор скорости двигателя постоянного тока на основе полевого МОП-транзистора

Очень крутую и простую схему регулятора скорости двигателя постоянного тока можно построить, используя всего один полевой МОП-транзистор, резистор и потенциометр, как показано ниже:

Использование Повторитель эмиттера BJT

Как видно, MOSFET настроен как повторитель истока или режим общего стока, чтобы узнать больше об этой конфигурации, вы можете обратиться к этому сообщению, в котором обсуждается версия BJT, тем не менее, принцип работы остается прежним. .

В приведенной выше конструкции контроллера двигателя постоянного тока регулировка потенциометра создает переменную разность потенциалов на затворе MOSFET, а исток MOSFET просто следует за значением этой разности потенциалов и соответствующим образом регулирует напряжение на двигателе.

Это означает, что источник всегда будет отставать от напряжения на затворе на 4 или 5 В и изменяться вверх/вниз с этой разницей, представляя переменное напряжение от 2 В до 7 В на двигателе.

Когда напряжение затвора составляет около 7 В, вывод истока будет подавать на двигатель минимум 2 В, вызывая очень медленное вращение двигателя, а 7 В будет доступно на выводе истока, когда регулировка потенциометра генерирует полные 12 В на затворе. мосфета.

Здесь мы можем ясно видеть, что контакт источника MOSFET, кажется, «следует» за затвором и, следовательно, является последователем источника имени.

Это происходит потому, что разница между затвором и истоком MOSFET всегда должна быть около 5 В, чтобы MOSFET работал оптимально.

В любом случае, приведенная выше конфигурация помогает обеспечить плавное регулирование скорости двигателя, и такая конструкция может быть построена довольно дешево.

Вместо MOSFET можно также использовать биполярный транзистор, и фактически биполярный транзистор обеспечивает более высокий диапазон регулирования от 1 до 12 В на двигателе.

Демонстрационное видео

Когда дело доходит до равномерного и эффективного управления скоростью двигателя, идеальным вариантом становится контроллер на основе ШИМ, здесь мы узнаем больше о простой схеме для реализации этой операции.

Добавление светодиодных индикаторов

Вы можете добавить светодиоды параллельно двигателю для быстрой индикации скорости. Светодиоды должны иметь разные характеристики прямого падения напряжения, как у нас для красных, оранжевых, желтых и зеленых светодиодов.Из-за увеличивающихся номиналов прямого напряжения светодиодов они постепенно загораются последовательно по мере увеличения напряжения на двигателе, что также указывает на скорость двигателя

Идея была успешно опробована одним из заядлых читателей этого блога. На следующих изображениях прототипа показано, как это было сделано:

Использование полевого МОП-транзистора в качестве мощного потенциометра

На следующем рисунке ниже показана очень простая схема регулятора скорости двигателя постоянного тока, в которой полевой МОП-транзистор используется в качестве мощного потенциометра (реостата).Схема предназначена для работы с двигателями постоянного тока на 12 В, потребляющими пиковый ток менее 5 ампер.

Питание от сети переменного тока подается через выключатель S1 на первичную обмотку разделительно-понижающего трансформатора T1. Схема двухтактного выпрямителя двухполупериодного выпрямления D1 и D2 выпрямляет выходной сигнал T1, а результирующий нефильтрованный выход постоянного тока в определенной степени сглаживается конденсатором C1 для получения относительно постоянного потенциала постоянного тока.

На этом выходе постоянного тока может быть значительный уровень пульсаций, однако в данном приложении это не имеет значения.Tr1 обеспечивает питание нагрузки и смещается через цепь резистивного делителя, состоящую из R1, VR1 и R2.

Напряжение смещения затвора, подаваемое на Tr1, может оказаться недостаточным для того, чтобы полевой МОП-транзистор мог нормально работать с движком VR1 в конце его вращения, и двигатель не будет работать. Перемещение движка VR1 к противоположному концу его вращения позволяет постоянно увеличивать смещение на Tr1, что приводит к неуклонному уменьшению сопротивления стока к истоку.

Из-за этого мощность, подаваемая на двигатель, увеличивается вместе со скоростью двигателя, пока Tr1 не достигнет насыщения (когда двигатель работает на полной скорости). Таким образом, VR1 можно использовать для изменения скорости двигателя от минимальной до максимальной.

C2 отфильтровывает любой шум сети или другие электрические помехи, которые в противном случае могли бы быть уловлены схемой затвора Tr1 с высоким импедансом, предотвращая снижение скорости двигателя до нуля. D3 — это защитный диод, который подавляет любые чрезмерные скачки обратного напряжения, которые могут возникнуть в результате чрезмерной индуктивной нагрузки двигателя.

Схема №2: ШИМ-управление двигателем постоянного тока с ИС 555

Конструкцию простого контроллера скорости двигателя с использованием ШИМ можно понять следующим образом: конденсатор С1 не заряжен.

Вышеупомянутые условия инициируют колебательный цикл, в результате чего на выходе устанавливается высокий логический уровень.
Высокий выход теперь заставляет конденсатор заряжаться через D2.

При достижении уровня напряжения, составляющего 2/3 напряжения питания, срабатывает контакт №6, который является порогом срабатывания микросхемы.
В момент срабатывания контакта №6 контакты №3 и №7 возвращаются к низкому логическому уровню.

При низком уровне на контакте №3 конденсатор C1 снова начинает разряжаться через D1, и когда напряжение на C1 падает ниже уровня, составляющего 1/3 напряжения питания, контакты №3 и №7 снова становятся высокими, вызывая цикл следовать и продолжать повторять.

Интересно отметить, что C1 имеет два дискретно установленных пути для процесса зарядки и разрядки через диоды D1, D2 и через плечи сопротивления, установленные потенциометром соответственно.

Это означает, что сумма сопротивлений, с которыми сталкивается C1 во время зарядки и разрядки, остается неизменной независимо от того, как установлен потенциометр, поэтому длина волны выходного импульса всегда остается неизменной.

Однако, поскольку периоды времени зарядки или разрядки зависят от значения сопротивления, встречающегося на их пути, потенциометр дискретно устанавливает эти периоды времени в соответствии со своими настройками.

Поскольку периоды заряда и разряда напрямую связаны с выходным рабочим циклом, он меняется в зависимости от регулировки потенциометра, придавая форму предполагаемым переменным ШИМ-импульсам на выходе.

Среднее значение соотношения метка/пробел дает выход ШИМ, который, в свою очередь, управляет скоростью двигателя постоянного тока.

Импульсы ШИМ подаются на затвор MOSFET, который реагирует и регулирует ток подключенного двигателя в ответ на настройку потенциометра.

Уровень тока через двигатель определяет его скорость и, таким образом, реализует эффект управления через потенциометр.

Частоту на выходе микросхемы можно рассчитать по формуле:

F = 1.44(VR1*C1)

МОП-транзистор можно выбрать в соответствии с требованиями или током нагрузки.

Принципиальную схему предлагаемого регулятора скорости двигателя постоянного тока можно увидеть ниже:

Прототип:

Видеотестирование Доказательство:

конструкция используется для управления скоростью двигателя постоянного тока. Как вы можете убедиться, хотя лампочка отлично реагирует на ШИМ и меняет свою интенсивность от минимального свечения до максимально слабого, двигатель не работает.

Сначала двигатель не реагирует на узкие ШИМ, а запускается рывками после того, как ШИМ настроены на значительно большую ширину импульса.

Это не означает, что в цепи есть проблемы, это связано с тем, что якорь двигателя постоянного тока плотно удерживается между парой магнитов. Чтобы инициировать запуск, якорь должен совершить скачкообразное вращение через два полюса магнита, что невозможно при медленном и мягком движении. Он должен начинаться с толчка.

Именно поэтому двигатель изначально требует более высоких настроек ШИМ, и после начала вращения якорь получает некоторую кинетическую энергию, и теперь достижение более низкой скорости становится возможным за счет более узких ШИМ.

Тем не менее, доведение вращения до едва движущегося медленного состояния может быть невозможным по той же причине, что описана выше.

Я изо всех сил старался улучшить реакцию и добиться максимально медленного ШИМ-управления, внеся несколько изменений в первую диаграмму, как показано ниже: прикрепляется или связывается с грузом через шестерни или систему шкивов.

Это может произойти из-за того, что нагрузка будет действовать как демпфер и поможет обеспечить контролируемое движение при более медленной регулировке скорости.

Схема №3: ​​Использование IC 556 для улучшенного управления скоростью

Изменение скорости двигателя постоянного тока может показаться не таким уж сложным, и вы можете найти множество схем для этого.

Однако эти схемы не гарантируют постоянного уровня крутящего момента при более низких скоростях двигателя, что делает их работу весьма неэффективной.

Кроме того, на очень низких скоростях из-за недостаточного крутящего момента двигатель может заглохнуть.

Еще одним серьезным недостатком является то, что в этих схемах нет функции реверса двигателя.

Предлагаемая схема полностью свободна от вышеперечисленных недостатков и способна генерировать и поддерживать высокие уровни крутящего момента даже на минимально возможных скоростях.

Работа схемы

Прежде чем мы обсудим предложенную схему ШИМ-контроллера двигателя, мы также хотели бы изучить более простую альтернативу, которая не так эффективна. Тем не менее, его можно считать достаточно хорошим, пока нагрузка на двигатель не высока и пока скорость не снижена до минимального уровня.

На рисунке показано, как можно использовать одну микросхему 556 для управления скоростью подключенного двигателя, мы не будем вдаваться в подробности, единственным заметным недостатком этой конфигурации является то, что крутящий момент прямо пропорционален скорости двигателя. .

Возвращаясь к предложенной схеме контроллера скорости с высоким крутящим моментом, здесь мы использовали две ИС 555 вместо одной или, скорее, одну ИС 556, которая содержит две ИС 555 в одном корпусе.

Принципиальная схема

Основные характеристики

Вкратце предлагаемый контроллер двигателя постоянного тока включает следующие интересные функции:

Скорость можно плавно изменять от нуля до максимума, без остановки.

Крутящий момент никогда не зависит от уровней скорости и остается постоянным даже при минимальных уровнях скорости.

Вращение двигателя может быть перевернуто или реверсировано в течение доли секунды.

Скорость регулируется в обоих направлениях вращения двигателя.

Две микросхемы 555 выполняют две отдельные функции. Одна секция сконфигурирована как нестабильный мультивибратор, генерирующий прямоугольные импульсы с частотой 100 Гц, которые подаются на предыдущую секцию 555 внутри корпуса.

Указанная выше частота отвечает за определение частоты ШИМ.

Транзистор BC 557 используется в качестве источника постоянного тока, который поддерживает заряженным соседний конденсатор на его коллекторном плече.

Это создает пилообразное напряжение на вышеупомянутом конденсаторе, которое сравнивается внутри микросхемы 556 с образцом напряжения, приложенного извне по показанной схеме выводов.

Внешнее пробное напряжение может быть получено от простой цепи питания переменного напряжения 0–12 В.

Это изменяющееся напряжение, подаваемое на микросхему 556, используется для изменения ШИМ импульсов на выходе и, в конечном счете, используется для регулирования скорости подключенного двигателя.

Переключатель S1 используется для мгновенного изменения направления вращения двигателя, когда это необходимо.

Перечень деталей

  • R1, R2, R6 = 1 кОм,
  • R3 = 150 кОм,
  • R4, R5 = 150 Ом,
  • R7, R8, R9, R10 = 470 Ом, F 90
  • C2, C3 = 0,01UF,
  • C4 = 1UF / 25VT1,
  • T2 = TIP122,
  • T3, T4 = TIP127
  • T5 = BC557,
  • T6, T7 = BC547,
  • D1 — D4 = 1N5408,
  • Z1 = 4V7 400 мВт
  • IC1 = 556,
  • S1 = тумблер SPDT

Вышеприведенная схема была вдохновлена ​​​​следующей схемой драйвера двигателя, которая была давно опубликована в журнале elektor electronic India.

Управление крутящим моментом двигателя с помощью ИС 555

Первую схему управления двигателем можно значительно упростить, используя переключатель DPDT для операции реверсирования двигателя и используя транзистор эмиттерного повторителя для реализации управления скоростью, как показано ниже:

Улучшено Крутящий момент на низкой скорости с использованием КМОП-ШИМ-управления

Хотя схема контроллера скорости с одним полевым МОП-транзистором, описанная в начале статьи, включает в себя преимущество простоты, она может иметь несколько недостатков.Один из них заключается в том, что в полевом МОП-транзисторе существует значительный уровень рассеяния, особенно когда скорость двигателя регулируется примерно на 50 процентов от оптимальной. Однако это может быть, конечно, не серьезной проблемой, и просто требует установки умеренно большого радиатора на MOSFET.

Гораздо более серьезной проблемой является то, что двигатель может заглохнуть, как только этот тип линейного контроллера будет настроен на более низкие скорости. Это связано с тем, что MOSFET в этой ситуации имеет относительно высокое сопротивление, что обеспечивает вход питания со значительно высоким выходным сопротивлением.

Когда нагрузка на двигатель увеличивается, он пытается потреблять чрезмерный ток питания, но это приводит к большему падению напряжения на транзисторе и более низкому напряжению питания на двигателе. В результате мощность, подаваемая на двигатель, существенно не меняется, а скорее уменьшается. Из-за этого мотор имеет склонность глохнуть. Кроме того, существует обратная реакция, при которой снижение нагрузки на двигатель снижает потребление тока, что приводит к большему напряжению питания и значительному увеличению скорости двигателя.

Используя контроллер, который подает импульсный ШИМ-сигнал на двигатель, вы можете значительно улучшить управление скоростью двигателя.

Улучшенный крутящий момент с помощью КМОП-ШИМ-управления скоростью

Один из методов реализации этого и тот, который используется здесь, состоит в том, чтобы иметь схему, которая обеспечивает фиксированную длительность выходного импульса при изменении частоты импульсов для изменения скорости двигателя. Низкая частота создает длинные промежутки между импульсами и подает на двигатель относительно небольшую мощность.

При увеличении частоты заметных промежутков между импульсами нет, и двигатель получает почти постоянный сигнал.Это приводит к высокой средней мощности двигателя, который работает на полной скорости. Преимущество этой системы заключается в том, что когда двигатель работает в импульсном режиме, он, по существу, получает полную мощность во время периодов включения импульсов и может потреблять большой ток питания, если этого действительно требует нагрузка на двигатель.

В результате двигатель питается последовательностью сильных импульсов, которые не допускают остановки и обеспечивают повышенный крутящий момент даже на пониженных скоростях.

На следующем рисунке показана принципиальная схема импульсного регулятора скорости двигателя постоянного тока.Здесь T1, D1, D2 и C1 получают достаточный источник постоянного тока от сети переменного тока. Tr1 подключен последовательно с двигателем, но его затвор получает выходной сигнал от схемы нестабильного мультивибратора.

Эта ШИМ-схема построена с использованием двух из четырех вентилей КМОП-устройства 4001, которые используются в нестабильных КМОП-схемах довольно традиционной конструкции.

Пара временных резисторов подключена между выходом затвора 1 и соединением R1 и C2, что отличается от традиционной конструкции ШИМ.VR1 и R2 — это два резистора, а также направляющие диоды D3 и D4, соединенные последовательно с выходом логического элемента И-НЕ 1.

Два диода гарантируют, что R2 работает как времязадающее сопротивление всякий раз, когда выход нестабильного устройства высок, а VR1 работает как временного сопротивления всякий раз, когда выход низкий.

Период выходных импульсов постоянен, так как R2 имеет заданное значение. Интервал между ними можно изменить, варьируя VR1. Это значение будет почти равно нулю при настройке на минимальное сопротивление.Соотношение выходных меток больше десяти к одному при максимальном сопротивлении. Таким образом,

VR1 можно настроить для создания желаемой скорости двигателя с эффективным крутящим моментом, при этом самая низкая скорость достигается при полном сопротивлении, а самая высокая скорость достигается при нулевом сопротивлении.

Прецизионное управление двигателем с использованием одного операционного усилителя

Чрезвычайно усовершенствованное или сложное управление двигателем постоянного тока. Двигатель может быть достигнут с использованием операционного усилителя и тахогенератора. Операционный усилитель выполнен в виде переключателя, чувствительного к напряжению.В схеме, показанной ниже, как только выходное напряжение тахогенератора становится ниже заданного опорного напряжения, переключающий транзистор включается, и на двигатель подается 100% мощность.

Переключение операционного усилителя произойдет всего за пару милливольт вокруг опорного напряжения. Вам понадобится двойной источник питания, который может быть просто стабилизирован стабилитроном.

Этот контроллер двигателя обеспечивает бесступенчатую регулировку диапазона без каких-либо механических проблем.

Выходной сигнал операционного усилителя составляет всего +/- 10% от уровня питающих шин, таким образом, используя повторитель с двойным эмиттером, можно управлять огромными скоростями двигателя.

Опорное напряжение может быть зафиксировано с помощью термисторов, LDR и т. д. Экспериментальная установка, показанная на принципиальной схеме, использовала операционный усилитель RCA 3047A и двигатель 0,25 Вт 6 В в качестве тахогенератора, который генерировал около 4 В при 13000 об/мин для предполагаемой обратной связи.

Дополнительные схемы :

ШИМ-управление двигателем с использованием только биполярных транзисторов

Следующая схема также использует принцип ШИМ для желаемого управления скоростью двигателя, однако она не зависит от каких-либо интегральных схем или интегральных схем, а использует только обычные биполярные транзисторы. для реализации.Я взял это со страницы старого журнала.

Цепи управления двигателем с использованием LM3524

ИС LM3524 представляет собой специализированную схему контроллера ШИМ, которая позволяет нам настраивать очень полезные и точные схемы управления скоростью двигателя, как описано ниже: ЛМ3524. В конструкцию дополнительно включено управление с обратной связью на базе датчиков через микросхему LM2907.

Небольшой магнит прикреплен к валу двигателя, так что во время вращения магнит проходит близко к трансформатору приемной катушки с железным сердечником.Механизм заставляет вращающийся магнит индуцировать резкий электрический импульс в катушке датчика, который используется LM2907 в качестве триггерного входа и соответствующим образом обрабатывается в качестве управляющего импульса обратной связи для микросхемы LM3524.

Система обратной связи гарантирует, что заданная скорость никогда не отклонится от заданного значения, обеспечивая точный контроль скорости. Потенциометр на выводе № 2 LM3524 используется для управления скоростью двигателя.

Безсенсорное управление, без обратной ЭДС двигателя

Следующая конструкция ШИМ-управления скоростью LM3525 позволяет осуществлять управление с обратной связью без включения сложного механизма тахометра или громоздких датчиков, реализованных в предыдущей конструкции.

Здесь противо-ЭДС двигателя используется в качестве сигнала обратной связи и подается на вход микросхемы LF198. В случае, если скорость имеет тенденцию к превышению установленного уровня, LF198 сравнивает нарастающий сигнал ЭДС с эталонным сигналом с выхода LM393. Результирующий вывод направляется на усилитель ошибки ИС LM3524 для необходимой обработки выходного ШИМ на транзисторы драйвера. Управляемый ШИМ из-за этой обратной связи без датчиков через обратную ЭДС в конечном итоге позволяет двигателю оставаться точно фиксированным на правильной скорости, регулируемой потенциометром на выводе № 2.

Как запитать светодиодную ленту от аккумулятора?(Ultra Guide)-Lightstec

Во-первых, нам нужно убедиться, что используемая вами лента RGB рассчитана на 12 В постоянного тока. Затем мы можем использовать батарейный блок DC12V в качестве источника питания.

Во-вторых, мы подключаем плюс контроллера RGB к плюсу аккумулятора, а минус к минусу аккумулятора.

В-третьих, подключите светодиодную ленту RGB к выходу контроллера RGB.

Тогда это сработает.

Из вышеизложенного мы знаем, что способ подключения светодиодной ленты такой же, как и при использовании источника питания для светодиодов.Просто замените светодиодный источник питания на аккумулятор.

Могу ли я использовать аккумулятор для питания моего сенсорного шкафа?

Некоторые люди хотели бы установить светодиодную сенсорную подсветку шкафа под кухней. Чтобы сделать батарею освещения, когда мы работаем на кухне. И свет шкафа датчика очень горячий продукт.

Как мы знаем выше, батарейный отсек DC12V. Затем нам нужно проверить, соответствует ли входной сигнал светодиодного светильника вашего датчика DC12V. Если вход DC12V, то способ подключения такой же.Просто подключите положительный и отрицательный свет шкафа к положительному и отрицательному аккумулятору.

И я предлагаю вам использовать перезаряжаемую батарею, тогда, если батарея разрядится, вы сможете ее зарядить. Это хорошо для окружающей среды и сэкономить расходы.

Теперь многие домашние мастера хотели бы украсить свой автомобиль разноцветной светодиодной лентой.

Как мы знаем, аккумулятор в автомобиле является перезаряжаемым аккумулятором, а выход аккумулятора составляет 12 В постоянного тока. Поэтому, когда мы используем светодиодную ленту внутри автомобиля.Нам нужно убедиться, какой провод положительный, а какой отрицательный от аккумулятора. Если вы не знакомы с автомобильными проводами, у вас есть аккумулятор, который отвезет ваш автомобиль в автомагазины, а затем подключит провода для вас.

Как долго батарея может питать светодиодную ленту?

Как известно, чем больше аккумулятор, тем больше емкость. Затем, когда вы используете ту же светодиодную ленту, батарея большего размера будет работать долгое время.

Когда вы используете один и тот же аккумулятор, светодиодная лента меньшей мощности будет работать дольше.

Как и в случае с нашим мобильным телефоном, при использовании нового телефона батарея может работать 2 дня. После того, как мы используем 1 год, он может использовать только 1 день. Тогда, как и в случае с батареей для полосового освещения, новая батарея будет работать дольше, а старая батарея будет использовать меньше времени.

Не усовершенствованная светодиодная лента на батарейках.

Как известно, батарейки не всегда могут иметь мощность. Батарея разряжается, когда вы используете некоторое время. Так что вам нужно заменить батарею или перезарядить батарею.Иногда, если вы забудете заменить аккумулятор без питания, вы не сможете использовать светодиодную ленту.

Итак, я предлагаю, если место проводное удобство, у вас есть батарея, использующая источник питания для питания светодиодной ленты. Тогда вам не нужно думать о том, есть ли у батареи мощность или нет.

При использовании батареи у вас есть батарея, проверяйте батарею каждые 6 месяцев. Потому что в батарее есть какие-то химические вещества. Обычно это разглашается. И это повредит наш батарейный отсек, поэтому нам нужно проверить план.

Заключение

1, аккумулятор может легко питать светодиодную ленту. И его легко использовать там, где непростая проводка.

2, батарея AA, перезаряжаемая батарея 3,7 В и батарея постоянного тока 12 В подходят для светодиодной ленты.

3, светодиодная лента с аккумулятором используется так же, как и обычная светодиодная лента. Вы можете подключить диммер, контроллер RGB, контроллер CCT, датчик и т. Д.

4, свет прокладки Сид батареи может выполненный на заказ. Поэтому, если у вас есть какие-либо идеи для этой светодиодной ленты на батарейках, вы можете связаться с lighttec.Мы всегда рады.

BU-405: Зарядка от источника питания

Узнайте, как зарядить аккумулятор без специального зарядного устройства.

Аккумуляторы можно заряжать вручную с помощью блока питания с регулируемым пользователем напряжением и ограничением тока. Я подчеркиваю ручной , потому что зарядка требует ноу-хау и никогда не может быть оставлена ​​без присмотра; прекращение заряда не автоматизировано. Из-за трудностей с определением полного заряда никелевых аккумуляторов я рекомендую заряжать вручную только свинцовые и литиевые аккумуляторы.

Свинцово-кислотный

Перед подключением аккумулятора рассчитайте напряжение заряда в соответствии с количеством последовательно соединенных элементов, а затем установите желаемое напряжение и предельный ток. Чтобы зарядить 12-вольтовую свинцово-кислотную батарею (шесть элементов) до предела напряжения 2,40 В, установите напряжение на 14,40 В (6 x 2,40). Выберите ток заряда в соответствии с размером батареи. Для свинцово-кислотных аккумуляторов это составляет от 10 до 30 процентов от номинальной емкости. Аккумулятор емкостью 10 Ач при 30-процентной зарядке около 3А; процент может быть ниже.Стартерный аккумулятор емкостью 80 Ач может заряжаться током 8А. (10-процентная скорость зарядки равна 0,1C.)

Следите за температурой, напряжением и током батареи во время зарядки. Заряжайте только при температуре окружающей среды в хорошо проветриваемом помещении. Как только батарея полностью заряжена и ток упал до 3 процентов от номинального Ач, зарядка завершена. Отключите зарядку. Также отключите заряд через 16–24 часа, если ток достиг нижнего предела и не может опуститься ниже; высокий саморазряд (мягкое короткое замыкание) может помешать аккумулятору достичь низкого уровня насыщения.Если вам нужен плавающий заряд для готовности к работе, уменьшите напряжение заряда примерно до 2,25 В на элемент.

Вы также можете использовать источник питания для выравнивания свинцово-кислотной батареи, установив напряжение заряда на 10 процентов выше рекомендованного. Время перезарядки имеет решающее значение и должно тщательно соблюдаться. (См. BU-404: Что такое выравнивающий заряд)

Источник питания также может устранить сульфатацию. Установите напряжение заряда выше рекомендованного уровня, отрегулируйте ограничение тока до минимально возможного значения и наблюдайте за напряжением батареи.Полностью сульфатированная свинцово-кислотная батарея сначала может потреблять очень небольшой ток, но по мере растворения слоя сульфатации ток будет постепенно увеличиваться. Повышение температуры и размещение батареи на ультразвуковом вибраторе также могут помочь в этом процессе. Если батарея не принимает заряд через 24 часа, восстановление маловероятно. (См. BU-804b: Сульфатация и способы ее предотвращения)

Литий-ионный

Литий-ионный аккумулятор заряжается так же, как и свинцово-кислотный, и вы также можете использовать блок питания, но с особой осторожностью.Проверьте напряжение полного заряда, которое обычно составляет 4,20 В на элемент, и установите пороговое значение соответствующим образом. Убедитесь, что ни один из элементов, соединенных последовательно, не превышает это напряжение. (Схема защиты в коммерческом блоке делает это.) Полный заряд достигается, когда элемент(ы) достигает 4,20 В/напряжение элемента, а ток падает до 3 процентов от номинального тока или достигает нижнего предела и не может снижаться дальше. После полной зарядки отсоедините аккумулятор. Никогда не оставляйте ячейку при напряжении 4,20 В более чем на несколько часов.(См. BU-409: Зарядка литий-ионных аккумуляторов)

Обратите внимание, что не все литий-ионные аккумуляторы заряжаются до порога напряжения 4,20 В на элемент. Фосфат лития-железа обычно заряжается до напряжения отсечки 3,65 В на элемент, а титанат лития — до 2,85 В на элемент. Некоторые энергетические элементы могут принимать напряжение 4,30 В/элемент и выше. Важно соблюдать эти пределы напряжения. (См. BU-205: Типы литий-ионных)

NiCd и NiMH

Зарядка аккумуляторов на основе никеля с помощью источника питания является сложной задачей, поскольку обнаружение полного заряда основано на сигнатуре напряжения, которая меняется в зависимости от подаваемого зарядного тока.Если вам необходимо заряжать NiCd и NiMH с помощью регулируемого источника питания, используйте повышение температуры при быстрой зарядке на 0,3–1°C как показатель полного заряда. При зарядке малым током оцените уровень оставшегося заряда и рассчитайте время зарядки. Пустой NiMH аккумулятор емкостью 2 Ач будет заряжаться примерно за 3 часа при токе 750–1000 мА. Капельный заряд, также известный как эксплуатационный заряд, должен быть снижен до 0,05°C. (См. БУ-407: Зарядка никель-кадмиевая; БУ-408: Зарядка никель-металлогидридная)

Батарейки в портативном мире

Материал по Battery University основан на обязательном новом 4-м издании « Аккумуляторы в портативном мире — Справочник по перезаряжаемым батареям для не инженеров », который доступен для заказа через Amazon.ком.

Простой настольный блок питания

, который может собрать каждый!

Скачать PDF YouTube

 

Сегодня мы построим очень простой настольный блок питания. Это полезное устройство, которое найдет себе место на любом рабочем столе. Его также очень легко построить, что делает его идеальным проектом для начинающих.

Лучше всего то, что эта конструкция не требует возиться с каким-либо высоким напряжением. Он безопасен и прост в сборке благодаря использованию предварительно изготовленных модулей и дополнительного блока питания ноутбука.

Одним из основных элементов оборудования любого рабочего места с электроникой является блок питания. Источник регулируемого постоянного напряжения необходим каждому экспериментатору.

Наиболее распространенными напряжениями, используемыми в цифровой электронике, являются 5 вольт, 3,3 вольта и 12 вольт. Есть много разных способов получить эти напряжения, в том числе обычные источники питания USB, которые выдают 5 вольт.

Если вы ищете простое в сборке устройство, которое выдает все эти распространенные напряжения, мы уже собрали блок питания, используя старый компьютерный блок питания ATX.Это был хороший прибор, я даже добавил к нему амперметр, чтобы измерять ток. И, в большинстве случаев, это все, что вам действительно нужно.

Однако часто бывают ситуации, когда требуется «необычное» напряжение. Возможно, вы разрабатываете схему, которая в конечном итоге будет работать от батарей, и вам нужно эмулировать 6-вольтовую, 7,4-вольтовую или 9-вольтовую батарею. Или вам может просто понадобиться второй блок питания.

Дизайн, который я придумал, очень прост в сборке, у любого, у кого есть минимальные навыки сборки электроники, не должно возникнуть проблем с его сборкой.И вам не нужно создавать точно такое же устройство, которое создал я, вы можете использовать принципы проектирования, показанные здесь, для создания блока питания, который будет изготовлен на заказ для любого приложения.

Начнем!

Индивидуальный блок питания

Вот блок питания, который я построил. И я покажу вам, как вы можете построить точно такой же. Но это не обязательно.

Вы также можете использовать простые методы проектирования, которые я вам покажу, чтобы создать собственный блок питания.С переменным выходом или без него. С другим фиксированным напряжением или вообще без фиксированных напряжений.

На самом деле я создаю еще один блок питания с четырьмя фиксированными выходными напряжениями для моей камеры, чтобы отказаться от четырех отдельных блоков питания, которые я сейчас использую, когда снимаю видео. И я буду использовать ту же технику.

Разработан с учетом требований безопасности

Одна вещь, о которой вы должны помнить при создании любого источника питания, — это высокое напряжение на стороне линии (или «сети»).

Напряжение переменного тока в вашем домашнем хозяйстве составляет от 110 до 240 вольт, и оно может вас убить, если вы соприкоснетесь с ним!  Ошибка проводки может вызвать пожар или привести к тому, что металлический корпус «нагреется», превратив самодельный блок питания в смертоносное оружие.

В этой конструкции вам вообще не нужно работать с сетевым напряжением. Вы будете работать только с низковольтным постоянным током. Это безопасный дизайн, даже если вы новичок.

Мы совершим это «волшебство», используя то, что у вас, вероятно, уже есть в ящике для мусора или хранится в коробке в шкафу.

И, в качестве бонуса, ваш блок питания получит надлежащую сертификацию для работы от сетевого напряжения, не нарушая страховой полис вашего дома.

Переработанные детали

«Таинственная деталь», которая лежит в основе нашего блока питания, — это не что иное, как блок питания от старого ноутбука!

Эти «кирпичи» обычно выдают около 19 вольт, и большинство из них имеют приемлемый ток. Особенно это касается старых блоков, предназначенных для 15- и 17-дюймовых ноутбуков, они требовали приличного тока.

Тот, который я использую, от старого компьютера HP, который был куплен в 2008 году. Компьютер больше не работает, но его блоку питания дали новую жизнь!

Детали блока питания

Наряду с «кирпичиком» блока питания, который я только что описал, эта конструкция упрощается за счет использования модулей понижающего преобразователя.

Я рассказал о некоторых из этих модулей в статье и видео, посвященном Powering Your Projects. Модули, которые я использовал, не были включены в этот контент, и, поскольку есть сотни этих модулей на выбор, вам не обязательно использовать те же, что и я.

Вот детали, которые я использовал в своей простой конструкции блока питания.

Блок питания для ноутбука

Как упоминалось выше, мой блок питания был взят от ноутбука HP. Конечно, вы можете использовать другой, на самом деле, я ожидаю, что вы это сделаете.

Вот несколько особенностей, на которые следует обратить внимание при выборе блока питания:

  • Напряжение – Обычное напряжение составляет 19 вольт, что я и использовал. Другим распространенным выходным напряжением является 15 вольт, что также приемлемо.Все, что ниже, ограничит диапазон выходных напряжений, которые вы получите. Как правило, вам понадобится адаптер, который может обеспечить как минимум на 2 вольта больше, чем максимальное желаемое выходное напряжение.
  • Текущий — Чем больше, тем лучше. Мой кирпич рассчитан на 5 ампер, ищите такой, который может выдавать не менее 3 ампер. Следует отметить, что некоторые из этих устройств, особенно от «небрендовых» компьютеров, на самом деле не могут выводить столько, сколько они заявляют. По сути, чем выше, тем лучше здесь.
  • Вход — Конечно, он должен быть способен принимать сетевое напряжение с соответствующей вилкой. Большинство этих устройств являются «универсальными», поэтому обычно это не проблема. И если это один из ваших старых компьютеров, то у него уже есть правильная вилка питания.
  • Выходной разъем . В идеале ваше устройство должно использовать штекер, для которого вы можете найти ответный разъем. В противном случае вам нужно будет припаять новую вилку. Если вам нужно изменить его, я рекомендую использовать 2.1 мм или 2,5 мм коаксиальный штекер питания и разъем типа «бочонок», так как они очень распространены и их легко найти.

Ноутбуки — не единственные устройства, в которых используются блоки питания, подходящие для этой конструкции. Вы также можете найти некоторые старые принтеры, в которых они есть. Если у вас еще нет одного чека с друзьями и семьей, или просмотрите несколько гаражных распродаж или магазинов излишков. Скорее всего, у вас не возникнет проблем с его получением.

Модули понижающего преобразователя

Недорогие понижающие преобразователи делают этот проект возможным.Они берут на себя всю тяжелую работу по созданию стабильного регулятора напряжения, и они намного эффективнее, чем линейные устройства.

Для создания этого блока питания я использовал пару модулей понижающего преобразователя.

DROK 180081 Стабилизатор понижающего регулятора напряжения с числовым программным управлением

Я подобрал этот модуль на Амазоне, и это сердце моего блока питания.

Это устройство рассчитано на входное напряжение 6-55 вольт и выходное напряжение 0-50 вольт. Поскольку я подаю только 19 вольт, максимальная выходная мощность составляет около 17 вольт.

Это действительно хорошее устройство с функцией памяти для хранения ряда предустановленных уровней выходного напряжения. Это очень удобная функция, если у вас есть какие-то общие напряжения, которые вам нужно часто использовать.

Он использует поворотный энкодер для установки напряжения с шагом 0,01 вольта. Цветной дисплей показывает напряжение, ток и мощность, а также уровень входного напряжения.

Мне нравится этот модуль, потому что с ним очень легко работать. Он имеет пару соединений для входной мощности и другую пару для выходной мощности.

Вы могли заметить, что есть некоторые аналогичные модели, которые включают отдельную плату с вентилятором, а также другие модели, которые могут напрямую принимать сетевое напряжение. Поскольку я пытаюсь избежать необходимости работать напрямую с сетевым напряжением, я решил не использовать их.

Я посмотрел на некоторые другие понижающие преобразователи переменного тока с дисплеями, и, наконец, я взял за основу конструкцию этого преобразователя, так как он имеет очень привлекательную переднюю панель, которая придаст вашему блоку питания профессиональный вид.

LM2596 Понижающий преобразователь постоянного тока в постоянный

LM2596 — очень популярная микросхема понижающего преобразователя, которая используется во многих недорогих модулях регуляторов.Модули, которые я выбрал (которые я также получил от Amazon), были очень недорогими, я купил упаковку из 10 штук, и они стоят около 1,50 долларов США каждый

.

Модули, которые я выбрал, принимают входное напряжение от 3 до 40 вольт и производят выходное напряжение от 1,5 до 35 вольт. Максимальный ток 3 ампера.

Устройства имеют многооборотный потенциометр, который используется для регулировки выходного напряжения. В моем случае я установил модуль на выходное напряжение 5 вольт, так как я подумал, что было бы неплохо иметь 5-вольтовый выход, а также переменный.

Эти модули очень просты в использовании. У них есть два контакта для входа постоянного тока и два контакта для выхода.

Шасси и другие детали

Блок питания и понижающие преобразователи являются основными компонентами блока питания, но для завершения работы вам также потребуется несколько других деталей.

Вот некоторые другие предметы, которые вам понадобятся:

  • Шасси — я приобрел пластиковое шасси для проекта размером 165 мм x 120 мм x 68 мм, но, конечно, вы можете использовать любую коробку, способную вместить ваши компоненты.Вы даже можете напечатать корпус на 3D-принтере, если у вас есть возможности. Я выбрал пластик, потому что его легко резать и сверлить.
  • Связывающие столбы — Вам потребуется набор соединительных столбиков для каждого выхода мощности. В моем дизайне с фиксированным и переменным выходом я выбрал два черных контакта (для заземления или негатива), а также красный и желтый.
  • Разъем питания — он должен соответствовать разъему на блоке питания. В некоторых блоках питания используются странные вилки, которые трудно найти, поэтому вам, возможно, придется поменять местами 2.Разъем 1 мм или 2,5 мм, так как они очень распространены. Лучше всего подойдет установка на шасси.
  • Стойки — Вам понадобится пара стоек, чтобы удерживать фиксированный регулятор. Понижающие преобразователи, которые я использовал, имеют отверстие для винтов 3 мм, поэтому я использовал стойки 3 мм.
  • Провод — потребуется соединительный провод калибра 22 или лучше. Я обнаружил, что с одножильным проводом легче работать, но вы также можете использовать многожильный. Я бы посоветовал выбрать два разных цвета, чтобы избежать пересечения отрицательного и положительного.

Вам также понадобится припой, паяльник, отвертки, отвертки, плоскогубцы и дрель с насадками. Вещи, которые у вас наверняка уже есть.

Конструкция блока питания

Теперь, когда вы собрали все детали и инструменты, пришло время собрать блок питания! Я собираюсь предположить, что вы собираете тот же блок питания, что и я, но если это не так, вы можете просто изменить инструкции в соответствии со своими конкретными требованиями.

Как видно из схемы подключение очень простое.Вы буквально отправляете напряжение с вашего силового блока на входы ваших понижающих преобразователей, а затем отправляете выходные сигналы преобразователя на клеммы привязки.

Как я уже говорил с самого начала, это очень простой проект!

Перед тем, как соединить все вместе, я использовал свой существующий источник питания для тестирования отдельных модулей. В качестве нагрузки я использовал 18-омный 10-ваттный резистор и на вход каждого преобразователя подал 19 вольт. Затем я использовал свой мультиметр для измерения выходного сигнала.

Конечно, вы можете использовать блок питания вместо настольного источника питания, особенно если у вас его еще нет (что вполне может быть причиной, по которой вы строите этот блок).

Я использовал поворотный энкодер на понижающем преобразователе и наблюдал за выходным сигналом мультиметра. Казалось, это работает очень хорошо.

Затем я переключился на «фиксированный» преобразователь и повернул многооборотный потенциометр так, чтобы он выдавал 5 вольт.

Все детали исправны и готовы к сборке.

Сборка блока питания

Прежде чем я смог подключить все необходимое, мне нужно было подготовить шасси. Я просверлил отверстия на передней панели для соединительных штифтов, а затем с помощью дрели и ножа вырезал отверстие для модуля преобразователя переменного напряжения.

Отверстие, по общему признанию, грубое, но рамка на модуле прекрасно это скрывает.

Я также просверлил отверстие на задней панели для разъема питания. Вы также можете добавить переключатель сюда, если хотите, я решил не делать этого, так как просто «выдернуть вилку», когда я хочу все выключить.

Наконец, я просверлил несколько отверстий для стоек, чтобы установить меньший модуль понижающего преобразователя.

Подключение всего

Я обнаружил, что отверстия на моих «фиксированных» понижающих преобразователях могут принимать два одножильных провода 22 калибра, поэтому я скрутил провода вместе и вставил их в отверстие.Просто подошли, и я пропаял соединения.

В качестве альтернативы вы можете выбрать параллельное соединение входных соединений на разъеме для переменного понижающего преобразователя, так как он использует винтовые клеммы.

Я использовал наконечники, поставляемые с клеммами, и припаял к ним выходные провода постоянного тока от каждого понижающего преобразователя. Модуль переменного понижающего преобразователя с дисплеем поставляется с винтовым разъемом, который отсоединяется от модуля. Это позволяет вам соединить все провода, а затем подключить модуль позже.

После того, как все было подключено, я прикрепил разъем питания к задней панели с помощью предоставленного оборудования. Обязательно не забудьте стопорную шайбу, так как это предотвратит раскручивание узла.

Конструкция передней панели состоит из установки крепежных стоек, оставляя вторую гайку в стороне, чтобы позже прикрепить проушины.

Модуль переменного понижающего преобразователя просто встает на место, если вы правильно вырезали отверстие! К сожалению, производитель не предоставил монтажный шаблон, поэтому я использовал штангенциркуль и линейку, чтобы разобраться.

Если вы возьмете тот же модуль, что и я, вырез будет представлять собой прямоугольник размером 71,5 мм x 39,2 мм, по крайней мере, так мне сказали мои цифровые штангенциркули.

Затем я прикрепил фиксированный понижающий преобразователь к стойкам и проверил все соединения. Пора собирать шасси!

Herse Еще один вид всех частей после того, как проводка сделана, но до того, как все было смонтировано.

Вы можете видеть, как проушины крепятся к задней части соединительных стоек с помощью прилагаемых дополнительных гаек.Хорошо затяните эти гайки.

Теперь вы можете зафиксировать панели на месте, сдвинув переднюю и заднюю панели вместе. Однако не запечатывайте все, так как мы хотим протестировать и отрегулировать наш источник питания, прежде чем закрывать корпус.

Тщательно все проверьте и приступайте к этапу тестирования.

Тестирование и устранение неполадок

Предполагая, что вы были осторожны с проводкой, теперь у вас должен быть рабочий блок питания.Вы, вероятно, захотите точно настроить фиксированное выходное напряжение модуля.

Перед тем, как что-либо подключить, было бы неплохо выполнить несколько проверок непрерывности с помощью мультиметра, чтобы убедиться в отсутствии коротких замыканий или ошибок проводки. Небольшое количество времени на повторную проверку вещей может впоследствии избавить вас от многих разочарований!

Возьмите ту же тестовую нагрузку, которую вы использовали раньше, и подключите ее к 5-вольтовому выходу вместе с мультиметром в режиме измерения напряжения. Отрегулируйте многооборотный потенциометр на фиксированном модуле, чтобы получить как можно более близкое к 5 вольтам.

Переместите тестовую нагрузку и мультиметр на переменный выход. Поэкспериментируйте с элементами управления и убедитесь, что выходное напряжение соответствует отображаемому на измерителе.

Сейчас самое время просмотреть инструкцию к модулю и узнать, как использовать его функции памяти. Похоже, это довольно функциональное устройство.

Когда вы будете довольны работой вашего нового блока питания, вы можете выключить его и завершить сборку корпуса. В моем пластиковом корпусе это включало установку верхней части на корпус, надевание ее на переднюю и заднюю панели, а затем защелкивание на месте.

Четыре длинных винта крепят монтажные ножки и используются для крепления верхней и нижней части корпуса. Затяните их, и блок питания готов.

Теперь у вас есть новый блок питания для вашего верстака!

Поиск и устранение неисправностей

Наиболее вероятной причиной низкой производительности блока питания данной конструкции является слабый блок питания. Если вы сможете заполучить несколько из них, вы обнаружите, что один из них работает лучше, чем другие.

Если у вас нет выходного сигнала от одного регулятора, но есть выходной сигнал от другого, перепроверьте проводку.Вы также можете легко удалить переменный модуль благодаря разъему uts, что поможет вам локализовать проблему.

Также может быть полезен доступ к сильноточному настольному источнику питания для временного использования в качестве входа.

В большинстве случаев вам вообще не нужно устранять неполадки, и все будет работать идеально. А затем вы можете похвалить себя за то, что самостоятельно создали полезное оборудование для прототипирования и тестирования.

Заключение

Итак, у вас есть простой способ быстро создать полезный источник питания, который можно легко адаптировать к вашим требованиям.

Усовершенствованиями основного источника питания могут быть светодиод питания на 5-вольтовом выходе, а также, конечно же, соответствующий гасящий резистор (220–470 Ом звучит неплохо). И вы можете добавить выключатель питания, чтобы вы могли быстро отключить питание.

Так что получайте удовольствие от переработки и перепрофилирования старых компьютерных блоков питания в настольные блоки питания собственного уникального дизайна!

 

Ресурсы

PDF-версия — PDF-версия этой статьи, отлично подходящая для печати и использования на рабочем месте.

 

Родственные

Краткое описание

Название изделия

Простой настольный блок питания, который может собрать каждый!

Описание

Создайте простой и безопасный настольный блок питания, переделав старый блок питания ноутбука вместе с несколькими высокотехнологичными модулями понижающего преобразователя.

Автор

Мастерская дронботов

Имя издателя

Мастерская дронботов

Логотип издателя

Самодельный автомобильный генератор ветряной турбины — Новости Матери-Земли

Превратите автомобильный генератор в альтернативную энергию, собрав этот дешевый и простой самодельный ветрогенератор.

Роберта Д. Коупленда

Если вы можете крутить гаечный ключ и работать с электродрелью, вы можете построить этот простой генератор за два дня.

Может быть, вы живете на лодке, отдыхаете в отдаленной хижине или живете вне сети, как я. Или, может быть, вы просто заинтересованы в снижении счета за электроэнергию. В любом случае, используя несколько недорогих и доступных материалов, вы можете построить самодельный ветрогенератор, который будет давать вам электричество, пока дует ветер.Вы сможете осветить эту кладовую, запитать свой сарай или использовать генератор, чтобы зарядить все аккумуляторы вашего автомобиля.

Электричество для моей автономной хижины поступает от солнечной и ветровой энергии, хранящейся в блоке из четырех 6-вольтовых аккумуляторов для гольф-кара, подключенных к 12-вольтовой системе. Контроллер заряда и датчик заряда батареи предохраняют мою систему от недостаточной или чрезмерной зарядки. Все это обошлось мне менее чем в 1000 долларов, и у меня есть свет, вентиляторы, телевизор и стереосистема, холодильник и диско-шар, который поднимают по особым случаям.

Если вы можете крутить гаечный ключ и работать с электродрелью, вы можете построить этот простой генератор за два дня: один день на сборку деталей и один день на сборку компонентов. Четыре основных компонента включают автомобильный генератор переменного тока со встроенным регулятором напряжения, вентилятор General Motors (GM) и блок сцепления (я использовал один из двигателей GM 350 1988 года выпуска), башню или столб, на котором можно установить генератор (15). футов использованной 2-дюймовой трубы обошлись мне в 20 долларов), и металл для изготовления кронштейна для установки генератора на мачте или столбе.Если вы парень Ford или девушка Mopar, это нормально — просто убедитесь, что ваш генератор переменного тока имеет встроенный регулятор напряжения. Вам также понадобится электрический кабель или провода, чтобы подключить генератор к аккумуляторным батареям. Я использовал 3-жильный кабель 8-го калибра, украденный с нефтяного пятна. (И они сказали, что переход от ископаемого топлива к возобновляемым источникам энергии займет годы. Пфф!)

Муфта вентилятора к генератору

Лопасти ветрогенератора переделаны из муфты автомобильного вентилятора.Чтобы прикрепить лопасти к генератору, вы можете приварить ступицу муфты вентилятора непосредственно к ступице генератора — просто убедитесь, что вентилятор находится точно на одной линии с валом генератора. Кроме того, убедитесь, что встроенные разъемы проводов генератора переменного тока расположены в нижней части генератора. Если у вас нет доступа к сварочному аппарату, вы можете соединить муфту вентилятора с генератором, используя следующие материалы:

  • Шайба 5/8 дюйма на 3 дюйма, толщина 3/16 дюйма
  • Электродрель
  • Метчик с резьбой 1/4 дюйма
  • Сверло, соответствующее конкретному метчику
  • (4) болта размером от 1/4 дюйма на 1-1/2 дюйма до 2-1/2 дюйма с соответствующими гайками и стопорными шайбами ​​

С помощью 3-дюймовой шайбы и четырех болтов соберите муфту вентилятора и генератор.Просверлите четыре отверстия в шайбе, чтобы они совпадали с отверстиями в муфте вентилятора, а затем нарежьте резьбу в отверстиях с помощью 1/4-дюймового метчика. Вкрутите болты в отверстия. Чтобы определить длину болтов, которые вам понадобятся, установите вентилятор на верхнюю часть генератора, чтобы шкив вентилятора опирался на шкив генератора, а оба вала находились на одной линии. Измерьте длину вдоль двух валов от задней части вентилятора генератора до задней части ступицы муфты вентилятора. Используйте эту длину для болтов. Отверните гайку шкива генератора и снимите шкив и небольшой вентилятор.Наденьте соединение, которое вы сделали из шайбы и четырех болтов, на вал генератора переменного тока так, чтобы болты были направлены в сторону от генератора. Затем снова прикрепите вентилятор генератора и гайку к валу, оставив шкив снятым. Большая гайка будет удерживать соединение на месте. Прикрепите узел муфты вентилятора к болтам, выступающим теперь из генератора, и затяните гайки, установив на место стопорные шайбы.

Изображение Роберта Д. Коупленда

Вы можете использовать любой автомобильный генератор со встроенным регулятором напряжения.

Узел кронштейна для установки генератора

Если у вас есть сварочный аппарат, сделать кронштейн несложно. Я использовал 1-дюймовую квадратную трубу для всех частей кронштейна и 2-футовый кусок 1-дюймовой трубы для вращающегося стержня, который помещается внутри стойки. Если у вас нет сварочного аппарата, не бойтесь. Кронштейн в сборе можно собрать с помощью 1/2-дюймовой оцинкованной трубы и фитингов. Вот список фитингов, которые вам, скорее всего, понадобятся:

  • (5) Тройники 1/2 дюйма
  • (2) колена 1/2 дюйма
  • (2) ниппеля 1/2 дюйма на 12 дюймов
  • (2) ниппеля 1/2 дюйма на 6 дюймов
  • (2) ниппеля 1/2 дюйма на 1 1/2 дюйма
  • (2) ниппеля 1/2 дюйма на 2 дюйма
  • (3) 1/2-дюймовые ниппели

Хвостовой плавник должен быть прикреплен к 12-дюймовому ниппелю в задней части кронштейна, чтобы вращать генератор и выровнять его по направлению ветра.Вы можете вырезать плавник высотой около 1 фута и длиной 2 фута из старого жестяного сайдинга или кровли с помощью ножниц по металлу или газового резака — форма прямоугольного треугольника работает лучше всего. Если вы используете гофрированный металл, обязательно обрежьте плавник, чтобы гофры располагались горизонтально. После того, как плавник вырезан, положите его поверх одного из 12-дюймовых ниппелей и просверлите три пилотных отверстия в нижней части хвостового плавника и в боковой части ниппеля. Используйте три шурупа (хорошо подойдут стальные кровельные шурупы), чтобы прикрепить хвост к ниппелю.

Изображение Роберта Д. Коупленда

Вентилятор крепится к генератору с помощью 3-дюймовой шайбы.

Башня ветрогенератора

Я использовал старую телевизионную антенную вышку высотой 20 футов вместе с трубой диаметром 2-1/2 дюйма в качестве верхней части. Вам также потребуется приварить или прикрутить стопор в верхней части мачты, который будет соприкасаться с стопором на кронштейне в сборе. Ограничители позволяют генератору вращаться только на 360 градусов по часовой стрелке или против часовой стрелки, поэтому ваш кабель не скручивается вокруг столба и башни.

Соединение 2-3/8-дюймовых металлических труб большого диаметра длиной от 10 футов до 20 футов (или высотой после возведения) образует хорошую башню после ее прикрепления к зданию или другой прочной стационарной конструкции. Убедитесь, что он безопасен, и при необходимости рассмотрите возможность использования растяжек.

Изображение Роберта Д. Коупленда

Для изготовления кронштейна генератора можно использовать 1/2-дюймовую оцинкованную трубу.

После того, как вы скрепите все компоненты генератора вместе и прикрепите их к узлу кронштейна, установите его на несмонтированную опору или мачту.Вставьте трубу узла кронштейна генератора в столб или в верхнюю часть мачты. Используйте две стальные шайбы, сложенные вместе, чтобы создать гладкую поверхность, которая будет служить подшипником между генератором и опорой. Присоедините положительный и отрицательный провода к генератору переменного тока и закрепите их на кронштейне и вдоль башни с помощью стяжек, вязальной проволоки или клейкой ленты. (На самом деле он не самодельный, если только на нем нет небольшой проволоки и клейкой ленты, не так ли?) Убедитесь, что провода достаточно провисают, чтобы ветрогенератор мог вращаться на 360 градусов.

Изображение Роберта Д. Коупленда

3-дюймовая шайба, используемая для крепления вентилятора и узла сцепления к генератору.

Вам, скорее всего, понадобится помощь, чтобы установить башню и генератор в вертикальном положении, так как они будут довольно тяжелыми. Веревки и подставка помогут, если вы поднимаетесь довольно высоко. Если в вашем регионе всегда ветрено, вам нужно будет находиться достаточно высоко над землей, чтобы движущиеся части безопасно находились над головой. Надежно закрепите башню на месте. Ветер может быть обманчиво сильным, поэтому не экономьте на этом этапе окончательной сборки.После того, как вы установили свой ветряной генератор, подключите провода к аккумуляторной батарее с контроллером заряда между ними, чтобы предотвратить недостаточную или чрезмерную зарядку.

Теперь вы будете готовы включать свет, крутить джемы и проигрывать эти старые диско-движения. Я знаю, что вы копили деньги на электрическую горку с семьей и друзьями.

Небольшой отказ от ответственности: сборка и использование на свой страх и риск. Мой генератор работает нормально, но ты отвечаешь за свою работу. Удачи и силы!

Изображение Роберта Д.Коупленд

Готовый генератор готов к подключению к аккумуляторной батарее и выработке возобновляемой энергии.


Роберт Д. Коупленд занимается выращиванием и продажей мясного скота, откормленного травой, и является владельцем расположенного в Техасе автономного приюта с ночлегом и завтраком под названием The Sunflower с домиками из соломенных тюков и земляной штукатурки, свежими органическими продуктами. , обучение пермакультуре, мастер-классы и многое другое!

Другие статьи о ветроэнергетике:

Обновлено 26 декабря 2021 г.  | Первоначально опубликовано 13 апреля 2017 г.

РОДСТВЕННЫЕ СТАТЬИ

Как построить сушилку для пищевых продуктов, работающую от солнца, печи или электричества; включая материалы, схемы и сборку.

Сделать красивую метлу своими руками легко, весело и практично.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта