Как проверить диод выпрямительный: Как проверить диод мультиметром. Подробная инструкция

Как проверить диод мультиметром. Подробная инструкция

В данной статье объясним как проверить диод мультиметром. Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.

Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.

 Зная это свойство диода можно легко проверить его на неисправность при помощи обычного мультиметра.

Как проверить диод мультиметром

Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:

Магнитный держатель печатной платы

Прочная металлическая основа с порошковым покрытием, четыре гибкие руч. ..

Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.

Признаки исправного диода:

  • При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение  отличается. Так у германиевых диодов оно составляет  примерно 0,3…0,7 вольт, у кремниевых диодов 0,7…1,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.

  • И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.

При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.

Альтернативный способ проверки исправности диода

В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.

При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного  диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).

Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.

Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.

Как проверить диодный мост

Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.

 

Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.

Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:

Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:

 а при следующей полуволне работает другая пара выпрямительных диодов:

Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:

 

Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:

  • 1-й: выводы 1 – 2;
  • 2-й: выводы 2 – 3;
  • 3-й: выводы 1 – 4;
  • 4-й: выводы 4 – 3;

При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.

Проверка диодов мультиметром

Добавлено 3 февраля 2017 в 21:10

Сохранить или поделиться

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.

Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.

Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно.

Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.

По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).

Мультиметр с функцией «Проверка диода», вместо низкого сопротивления, показывает прямое падение напряжения 0,548 вольт.

Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал. Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.

Измерение прямого напряжения диода с помощью мультиметра без функции «проверка диода»: (a) Принципиальная схема. (b) Схема соединений

Подключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.

Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.

Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода. Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального. Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.

Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания. При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток.

Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением (< 0,7 В), не видит диодов, что позволяет ему измерять параллельно подключенные к диоду резисторы.

Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением, слишком низким для прямого смещения диодов, не видит диодов.

Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению. Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя. Более подробную информацию об этом читайте в одной из следующих статей этой главы.

Подведем итоги

  • Омметр может быть использован для качественной оценки работоспособности диода. При подключении диода в одном направлении должно получено низкое сопротивление, а подключении в другом направлении – очень высокое сопротивление. При использовании для этой цели омметра, убедитесь, что знаете, какой из тестовых щупов положительный, а какой отрицательный!
  • Некоторые мультиметры имеют функцию «проверка диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерительные приборы обычно показывают слегка заниженное значение прямого напряжения, по сравнению с «номинальным» значением, из-за очень маленькой величины тока, используемой для проверки.

Оригинал статьи:

Теги

ДиодМультиметрОбучениеЭлектроника

Сохранить или поделиться

Проверка диодов выпрямительного блока — Энциклопедия по машиностроению XXL


Рис. 40. Проверка диодов выпрямительного блока на пробой или
Проверка диодов выпрямительного блока  [c.150]

Для проверки дополнительных диодов на короткое замыкание необходимо плюс батареи через лампу 1—3 Вт, 12 В присоединить к выводу 61 генератора, а минус — к одному из болтов крепления выпрямительного блока. Если лампа загорится, то в каком-то из дополнительных диодов имеется короткое замыкание. Найти поврежденный диод можно только сняв выпрямительный блок и проверив каждый диод в отдельности. Обрыв в дополнительных диодах можно обнаружить осциллографом по искажению на штекере 61, а также по низкому напряжению (ниже 14 В) на этом же штекере при средней частоте вращения ротора генератора.  [c.222]

Проверку блока производят на разобранном генераторе при отсоединенной обмотке статора. Выпрямительный блок проверяют от аккумуляторной батареи, подключаемой к его выводам через контрольную лампу (рис. 149). При проверке плюсовых диодов к плюсовой шине выпрямительного блока надо присоединить провод аккумуляторной батареи, а второй провод через контрольную лампу поочередно подсоединять к выводам диодов на выпрямительном блоке.  [c.352]

При проверке минусовых диодов к минусовой шине выпрямительного блока подсоединить провод аккумуляторной батареи,  [c.352]

Проверка технического состояния выпрямительных блоков. Проверка полупроводниковых диодных выпрямительных блоков основана на том, что сопротивление у исправных диодов при прохождении тока в одном направлении мало, а в другом — велико.  [c.76]


Выпрямительный блок тщательно очищают от грязи и пыли. Проверка полупроводниковых диодных выпрямительных блоков основана на том, что сопротивление у исправных диодов УО при прохождении тока в одном направлении мало, а в другом велико. При изменении полярности лампа ЕИ в одном случае горит (рис. 64, а), а в другом не горит (рис. 64, б). Лампа горит в обоих случаях, если имеется пробой, а не горит при обрыве. Такие диоды должны быть заменены.  [c.86]ВЫПРЯМИТЕЛЬНЫЙ БЛОК (рис. 29) необходимо тщательно очистить от грязи. Произвести проверку диодов с помощью контрольной лампы (рис. 30). Так как в каждой секции блока смонтированы диоды различной полярности, их проверяют при различной полярности включения аккумуляторной батареи.  [c.36]

ВЫПРЯМИТЕЛЬНЫЙ БЛОК (рис. 70) необходимо тщательно очистить от грязи. Произвести проверку диодов с помощью контрольной лампы (рис 22) Так » контактных колец  [c.80]

Диоды выпрямительного блока генератора проверяют обычно на СТО при пшощи специальных приборов. Однако при необходимости эту проверку можно вьшолнить самому с помощью контрольной лампы. Так как в каждой секции выпрямительного блока смонтированы диоды обратной и прямой полярности, их следует проверить при различной полярности а Скумуляторной батареи. Для про-  [c. 243]

В случае применения на генераторе переменного тока отдельных диодов, либо диодов, входящих в состав выпрямительного блока БПВ4 -45, принцип проверки выпрямительного устройства не изменяется. После отсоединения выводов фазовых обмоток статора к каждому диоду через контрольную лампу прикладывают напряжение аккумуляторной батареи в прямом и обратном направлении поочередно.  [c.144]

Стабилитроны, применяющиеся в электрооборудовании автомобилей, рассчитаны на очень малые токи, и при помощи контрольной лампы (даже маломощной) их проверять нельзя. Проверку стабилитрона на обрыв и короткое замыкание производят измерением сопротивления в прямом и обратном направлениях при помощи комбинированного электроизмерительного прибора (тестера) типа Ц20 или Ц4314. Таким же способом можно проверять диоды и выпрямительные блоки. Сопротивление в обратном направлении должно во много раз превышать сопротивление в прямом направлении.[c.180]

Проверка выпрямителей. Для проведения этой операции их отключают от схемы генератора. Выпрямительный блок в целом проверяют, подключая 4 аккумуляторной батареи через контрольную лампу к выводу -[- выпрямителя, а — батареи — к — или корпусу выпрямителя. Лампа не должна гореть. Если лампа горит, это свидетельствует о коротком замыкании (минимум в двух диодах прямой и обратной полярностей) или о пробое изоляции между теплоотводом диодов прямой полярности и корпусом выпрямителя у бесщеточных генераторов. Однако диоды надо проверять отдельно, соединенные с клеммами -[- (В), которые чаще выходят из строя, и с клеммой — , так как проверка выпрямителя в целом, если пробиты диоды только одной полярности, не дает результатов. При пробое диодов одной полярности на клеммах генератора имеется напряжение, но при включении  [c.199]


На автомобилях выпуска после 1970 г. устанавливаются, как правило, генераторы переменного тока с встроенными выпрямительными блоками кремниевых диодов. В статоре генератора Г250, например, с катушками в сборе могут быть такие дефекты, как обрыв в катушках фаз, замыкание обмотки на корпус, обрыв провода вывода обмотки фазы, облом наконеч-н ка. Обрыв Е катушке фазы проверяется пуге.м измерения сопротивления омметром. Проверка изоляции обмотки на электрическую прочность производится переменным токо.м напряжением 550 В в течение 1 мин.  [c.204]

где плюс, а где минус (анод, катод)

Хотя диодами называют радиоэлектронные устройства, имеющие всего два вывода, их нельзя подключать как придется. Полярность диода должна обязательно соблюдаться. Если этого не сделать, в лучшем случае схема не будет работать, в худшем диод может выйти из строя.

Для опытных радиолюбителей определить полярность прибора не составит труда, поэтому статья написана для малознакомых с радиотехникой людей. Поэтому прежде чем научиться определять полярность диода, разберем его устройство и принцип действия.

Устройство диода

Назначение диода пропускать ток в одном направлении и задерживать его в обратном. Чтобы этого добиться используют полупроводниковые материалы с разной проводимостью. Всего есть два способа передачи энергии:

  • с помощью электронов;
  • с помощью дырок.

Про электроны многие знают. У атома любой материи есть ядро и электроны. В металлах основным носителем энергии служат электроны, поскольку их достаточно легко можно оторвать от ядер. В диодах применяется другой материал — полупроводник.

До полупроводников применялись вакуумные лампы, где основным носителем также были электроны.

Этот материал отличается от металлов и диэлектриков тем, что в обычном состоянии он является диэлектриком – почти не пропускает через себя ток. При нагревании появляются освободившиеся электроны, которые могут участвовать в переносе заряда, то есть принимают свойства металлов, хотя и не в полной мере.

Хотя для создания диода могут использоваться разные материалы, например, металл, диэлектрик и подобные, мы поговорим о широко используемых диодах, состоящих из двух полупроводников. Материалом может служить:

  • кремний;
  • германий;
  • соединения галлия и индия.

Это лишь некоторые материалы, но их чаще всего используют. Далее к полупроводнику добавляют другой химический элемент, который при соединении с полупроводником либо отдает ему электрон (в этом случае говорят, что примесь донорная), либо забирает (тогда примесь называется акцепторной.).

В первом случае в полупроводнике наблюдается избыток электронов, во втором случае их недостает. Чтобы определить полярность диода, важно знать, какой тип полупроводника находится с одной и с другой стороны.

Всего существует два типа:

N-тип называют полупроводник с примесью, в котором основными носителями служат электроны, поскольку в этом материале их избыток. P-тип – полупроводник с недостатком электронов. Такую проводимость называют дырочной. Если эти два типа соединить вместе, то получим диод.

Как работает диод

Основа работы диода заключается в разной проводимости двух полупроводников (в этой статье речь только о них), соединенных вместе.

Полупроводник типа n пропускает электроны, а p-типа – дырки. Если полярность диода соблюдена, то есть на n-тип подается минус, а на p-тип – плюс, то на каждый тип подается прямое напряжение и диод открыт. Если знаки питания поменять местами, то есть подать обратное напряжение, то диод будет закрыт. Почему такое происходит?

В месте соединения двух полупроводников разной проводимостью образуется небольшая область смещения. Это когда электроны с n-типа частично переходят в область p-типа. В этом месте нет свободных электронов и дырок. Во время подключения прямого напряжения недостаток электронов и дырок восполняется источником питания, то есть закрытая для перехода носителей заряда зона почти исчезает.

Электроны, под действием электродвижущей силы, действующей в источнике питания, перепрыгивая из дырки в дырку, проходят участок p-типа и попадают на проводник.

Что будет, если поменять полярность питания: к участку n-типа подключить плюс, а к p-типа – минус? В этом случае электроны на участке n-типа отодвинутся к источнику питания, расширяя закрытую зону, тем самым увеличив внутреннее сопротивление диода. В этом случае диод будет закрыт.

Конечно, если повысить напряжение на диоде, то электроны смогут проскочить насыщенную область и через диод пойдет ток. Некоторые диоды работают именно в таком режиме, их называют стабилитронами.

Но выпрямительные диоды не «любят» такие условия и могут выйти из строя. Да и для стабилитронов оговаривается не только обратное напряжение, но и ток, при котором они могут работать. Если превысить указанные значения, то может произойти необратимый процесс – тепловой пробой и прибор выйдет из строя.

Катод и анод: где плюс и минус

Хотя у прибора всего два вывода необходимо знать, как определить полярность диода, чтобы не поставить его в обратном направлении? У диода имеется:

Слово, переведенное с греческого как анод, может означать вверх или от него. Вакуумные диоды на схемах изображаются в виде вытянутого круга, вверху которого располагается анод в виде перевернутой буквы «Т». Катод располагается внизу и обозначается горизонтальной круглой скобкой с отводом.

Электроны отрываются от катода и летят вверх, в сторону анода. Попадая на анод, они выходят во внешнюю цепь «от него». В этом случае анод должен быть подключен к положительному полюсу источника питания, а катод – к отрицательному. Про диод говорят, что он открыт и пропускает ток через себя. Когда полярность меняется, то есть на анод подается отрицательное напряжение, а на катод положительное – диод закрывается.

В полупроводниковых диодах анодом называется вывод от полупроводника p-типа, а катодом – вывод от полупроводника n-типа. В остальном принцип работы остается тем же самым.

Способы определения полярности диодов

Чтобы определить полярность диода, существует несколько способов:

  • с помощью маркировки на корпусе;
  • практическим путем;
  • используя прибор;
  • по таблицам и справочникам.

Кстати, производители оставляют за собой право использовать тот или иной метод, поэтому самым надежным будет ознакомление с технической документацией. Однако этот способ пока оставим и разберем самый простой.

Как узнать полярность диода по маркировке

Обычно производители дают подсказку, делая маркировку полярности диода. На крупных приборах могут быть проставлены значки диода – треугольник, упирающийся вершиной в короткий отрезок.

Вывод со стороны основания треугольника является анодом, он должен быть подключен к плюсу питания. Другой вывод, расположенный со стороны вершины треугольника с отрезком, будет катодом. К нему, соответственно, нужно будет подключить минус питания.

Если это выпрямительный диод, то он ставится в схему с переменным током. В этом случае на его аноде будет отрицательное напряжение, а на катоде — положительное. Помним, что электроны движутся относительно цепи питания от анода к катоду, а знак диода показывает направление движение дырок.

Это вызывает у новичков путаницу. Дело в том, что когда только начинали познавать электрический ток, считали, что заряд имеет положительный знак, значит, ток идет от положительно заряженного электрода к отрицательному.

Позднее разобрались, что основными носителями заряда являются электроны, а они имеют знак «—», но чтобы не переделывать схемы, которых к тому времени набралось немалое количество, оставили все как есть.

В большинстве случаев не имеет значения, каким способом переносится заряд.

Что касается мелких деталей, то на их корпусе со стороны вывода катода рисуется круговая полоска или ставится точка. На прямоугольных диодах обозначение полярности диода осуществляется полоской, которая может быть нарисована только на одной стороне прибора.

Как определить полярность диода мультиметром или тестером

Иногда бывает из-за старения или долгого хранения маркировка стирается и невозможно на вид определить, где анод, а где катод.

Совет. Не будет лишним даже новые диоды проверять на полярность. Это поможет сохранить полярность диода, даже если на заводе произошла ошибка с маркировкой.

Проверить полярность можно с помощью мультиметра. В новых конструкциях часто встречается режим проверки диода. Отыскать его можно с помощью значка диода, нарисованного на панели прибора.

Прежде чем приступать к измерениям, проверяют правильность подключения щупов: черный должен быть подключен к земле или общему проводу – это будет минус. Красный подключают к другому зажиму, возле него должно быть нарисовано несколько символов. По красному проводу будет идти «плюс» питания.

Включают прибор, устанавливают галетный переключатель на знак проверки диода. Щупами касаются двух выводов диода. Если слышен звуковой сигнал или прибор показывает небольшое сопротивление, значит, диод находится в открытом состоянии.

Это означает, что красный провод с положительным питанием подключен к аноду, а черный к катоду. Если звукового сигнала нет, а прибор показывает большое сопротивление, значит, диод закрыт. В этом случае на анод подается отрицательное напряжение (черный провод), а на катод положительное (красный провод).

Внимание! Некоторые диоды имеют малое обратное сопротивление, как правило, это мощные диоды. Поэтому чтобы определить полярность диода, нужно опираться на показания прибора. В том случае, когда сопротивление минимальное, это указывает на открытое состояние диода, в противном случае он закрыт. Если прямое и обратное сопротивления равны или бесконечно большие, это говорит о неисправности прибора.

При отсутствии режима проверки диода пользуются режимом проверки сопротивления. В этом случае показания снимаются только визуально.

С помощью источника питания (батарейки)

При отсутствии прибора можно воспользоваться источником постоянного тока с небольшим напряжением. Обычно это батарейка. Собирают следующую схему:

  • источник питания;
  • диод;
  • лампочка, рассчитанная на напряжение немного меньше выбранного питания;
  • переменный резистор с небольшим сопротивлением, зависит от напряжения питания и составляет от десятков Ом до 1 кОм.
Вместо лампочки можно выбрать светодиод, но это для тех, кто имеет опыт в таких проверках.

Собирают схему с помощью проводов. Лампочку удобнее использовать в патроне. К диоду и резистору провода припаивают, причем к резистору припаивают один провод к одному крайнему выводу, вторым замыкают средний и другой крайний вывод.

При пайке маломощных диодов, выполненных в небольшом стеклянном или пластиковом корпусе, необходимо пользоваться теплоотводом. В качестве теплоотвода могут подойти небольшие плоскогубцы, круглогубцы и подобные инструменты. Кто может работать паяльником, обходятся без теплоотвода.

Провода к источнику питания прижимают пальцами одной руки, второй рукой вращают ручку резистора.

Первоначально резистор устанавливают в положение, соответствующее максимальному сопротивлению. Постепенно уменьшая сопротивление, добиваются появления накала на нити лампочки. Если этого не происходит, меняют провода на источнике питания.

При появлении накала источник питания отключают, предварительно отмечая, к какому выводу диода поступает положительное питание, это и будет анодом.

Осторожно! Таким способом можно проверять мощные диоды, способные выдерживать большой прямой ток. Маломощные диоды можно проверять с помощью светодиодов или, лучше всего, с помощью прибора.

По технической документации

К сожалению, по внешнему виду некоторые диоды похожи на стабилитроны, работающие в обратном направлении. Чтобы не ошибиться с полярностью диода на схеме, необходимо удостовериться с помощью справочников, таблиц или прилагаемых к партии поясняющих документов.

В любом случае прежде чем устанавливать диод на схему, необходимо точно определить полярность диода.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как проверить диодный мост генератора: что нужно знать

Генератор автомобиля является важным элементом в устройстве автомобиля. Если просто, генератор, который является электродвигателем, питает всю бортовую сеть автомобиля электричеством после запуска ДВС. Также от генератора осуществляется зарядка аккумулятора (АКБ).

Как показывает практика, по тем или иным причинам могут возникать разные поломки генератора, однако достаточно часто распространенной неисправностью является диодный мост. Далее мы рассмотрим, почему выходят из строя диодные мосты, генератор не заряжает АКБ, а также как проверить диодный мост генератора. 

Содержание статьи

Мост диодный: проверка

Итак, неполадки генератора могут привести к тому, что аккумулятор не заряжается. Это приводит к его глубокому разряду. Также выход из строя отдельных элементов генератора может приводить к перезаряду АКБ, выкипанию электролита, повреждению батареи и т.п.

В любом случае, перед заменой АКБ необходимо проверять сам генератор. Если дело не в щетках или подшипниках, тогда виновником неисправностей может оказаться диодный мост.

Отметим, что каждому автовладельцу полезно знать, как проверить диодный мост своими руками. Обратите внимание, рассмотренным ниже способом сделать такую проверку можно в условиях обычного гаража.

Диодный мост: схема устройства

Хотя на разных авто устройство генератора может немного отличаться, общий принцип одинаков. Обычно диодные мосты генератора  имеют 4 или 6 диодов, задачей которых является преобразование переменного тока в постоянный. В основе лежит двухполярный способ выпрямления.

Фактически, выпрямительные диоды генератора выступают шлюзом, пропускающим ток только в одном направлению. Получается, ток из бортовой сети автомобиля не имеет возможности попасть на обмотки статора.

Если говорить о неисправностях, диоды, расположенные на корпусе генератора, по тем или иным причинам перегорают. Как правило, диодный мост горит по разным причинам, среди которых можно отдельно выделить следующие:

  • влага, масло, пыль и грязь, которые попадают на генератор в процессе эксплуатации;
  • высокие нагрузки на генератор в момент «прикуривания» авто с разряженной АКБ, когда «плюс» и «минус» перепутаны и т. д.

Как проверить диодный мост мультиметром и при помощи контрольной лампы

Начнем с того, что проверка диодного моста генератора может быть выполнена двумя способами. Один предполагает наличие тестера (мультиметра), тогда как второй  выполняется при помощи контрольной  12 В лампы.

  • Начнем с простейшего способа с лампой. Сначала нужно реализовать подключение диодного моста (пластины диодного моста) к минусовой клемме аккумулятора. Пластину нужно плотно прижать к корпусу генератора.

Далее берется заведомо рабочая лампочка с проводами, которая одним концом провода подключается к «плюсу» аккумулятора, тогда как второй конец провода присоединяется к клемме выхода дополнительных диодов. Затем подключение производится к болту  вывода «+», а также к точкам подключения обмотки статора.

Если лампочка начнет загораться, это четко указывает на то, что произошло перегорание или обрыв диодного моста. Кстати, дополнительная проверка диодного моста на обрыв выполняется так:

Нужно подключить «минус» контрольной лампы на «плюс» аккумулятора, второй конец контрольной лампочки  на «минус» АКБ. Далее подключение лампы реализуется в описанных выше местах контактов. Однако в данном случае лама должна гореть ярко. Если это не так (контрольная лампочка не горит или свечение очень слабое), это укажет на обрыв диодного моста.

  • Проверка диодного моста мультиметром потребует снятия всего моста с генератора. При этом способ более точный, так как каждый диод проверяется тестером отдельно.

Для проверки мультиметр выставляется в режим так называемого «прозвона». В данном режиме устройство издает звук во время замыкания двух электродов. Если звукового оповещения нет, тогда выставляется режим на 1 кОм.

Далее электроды мультиметра подключаются к двум концам диода, после чего щупы меняются местами. В норме диод должен в одну сторону показать 400-700 Ом, тогда как в другую бесконечность.

Если же бесконечность при прозвоне показывается в обе стороны, это указывает на то, что имеет место обрыв диода. Если же сопротивление есть, но оно слабое или же одинаковое как с одной, так и с другой стороны, в этом случае диод пробит. Теперь давайте рассмотрим такой способ более подробно.

Проверка диодного моста мультиметром

Перед началом диагностики генератора, само устройство нужно очистить от грязи и подготовить. Начинать проверку следует с того, что нужно снять защитный кожух, затем отсоединить выводы регуляторов. Обратите внимание, положительные диоды с красной маркировкой, отрицательные с черной.

Во время проверки тестером сначала проверяется вся цепь дополнительных диодов. Если обнаружены проблемы, тогда каждый диод нужно прозвонить по отдельности.  Для проверки положительный щуп тестера присоединяется к шине диодов, а отрицательный к нужному диоду.

Как уже было сказано выше, если диод генератора в норме, показания на приборе покажут бесконечность, а после перестановки щупов появится нужное сопротивление. Если же показания отличаются от нормы, диод или весь мост требуется заменить. Подобным образом можно проверить схему из положительных и отрицательных диодов, прозванивая каждый.

Полезные советы

Как показывает практика, часто выгорает диодный мост генератора именно в результате неосмотрительности самого владельца автомобиля. Если имеет место неправильное подключение клемм аккумулятора, запредельно высокая нагрузка на генератор, тогда диоды горят быстро.

Также важно понимать, что активная эксплуатация автомобиля, в результате чего на генератор попадает грязь и вода, не добавляет ресурса диодному мосту. В результате, чтобы увеличить срок службы, нужно правильно мыть двигатель, соблюдать правила подключения клемм к аккумулятору, уметь прикуривать автомобиль и т.д.

В случае, когда нового диодного моста нет, тогда решение – замена вышедших из строя отдельных элементов. Для замены нужен мощный паяльник, а также заведомо исправные диоды в запасе.

Обратите внимание, сразу выполнять замену всего диодного моста также не всегда целесообразно. Если генератор служит давно, тогда оптимально менять диодный мост в сборе, однако это будет более затратным решением.

В случаях, когда генератор не старый, а поломка произошла по причине случайной ошибки самого владельца (например, после прикуривания авто), можно ограничиться только ремонтом генератора. Зачастую, в этом случае не следует опасаться, что другие диоды также начнут быстро выгорать (при условии соблюдения правил во время дальнейшей эксплуатации).

Что в итоге

Как видно, диодный мост (мост диодов генератора) является важным элементом. На практике, кроме щеток генератора, обмотки статора и ротора, а также подшипников, в списке частых поломок находится и сам диодный мост.

По этой причине во время проверки генератора на работоспособность следует учитывать, что вероятность перегорания диодов достаточно высокая (особенно если генератор уже далеко не новый).

Напоследок отметим, чтобы продлить сок службы генератора, специалисты рекомендуют периодически проводить его профилактику, которая заключается в диагностике, а также в просушке и качественной очистке от различных загрязнений.

Читайте также

Диодный мост проверить


Как правильно проверить диодный мост мультиметром

Диодный мост есть практически в любой аппаратуре, и выход его из строя – очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами. Для этого нужно знать, как проверить диодный мост. Именно эту задачу мы и постараемся сегодня решить.

Что такое диодный мост и что у него внутри

Прежде чем мы займемся проверкой диодного моста, необходимо узнать, что вообще такое диодный мост и из чего он состоит. Мост представляет собой схему, собранную из четырех диодов, соединенных определенным образом, и служит для преобразования переменного напряжения в постоянное. Используется такая схема практически во всей аппаратуре, питающейся от сети – ведь почти всей электронике для своего питания нужно постоянное напряжение, а в сети оно переменное. Но для начала выясним, что такое диод и какими свойствами он обладает.

Диод и принцип его работы

Диод – двухэлектродный полупроводниковый прибор, способный проводить ток только в одном направлении. Его часто так и называют — полупроводник. Если включить полупроводник в цепь постоянного тока анодом к плюсовому выводу источника питания, то через него потечет ток. Если к минусовому – тока в цепи не будет. Во втором случае говорят, что диод закрыт. А теперь включим наш полупроводник в цепь переменного напряжения.

Выпрямление переменного напряжения при помощи полупроводников

Из рисунка хорошо видно, что полупроводник пропустил положительную полуволну и срезал отрицательную. Если включить его в другой полярности, то срезанной окажется положительная полуволна.

Чем диодный мост лучше диода

Теоретически используя лишь один полупроводник, ты смог бы преобразовать переменное напряжение в постоянное. Практически же ты получишь на выходе сильно пульсирующее напряжение, которое мало годится для питания электронных схем. Но если включить несколько диодов определенным образом, то лишнюю полуволну можно не срезать, а в буквальном смысле перевернуть ее. А теперь взгляни на схему ниже:

 

Диодный мост по схеме Гретца

При положительной полуволне работают диоды под номером 1 и 3: первый пропускает плюс, второй — минус. Полупроводники 2 и 4 в это время заперты и в процессе не участвуют – к ним приложено обратное напряжение, и сопротивление их pn-переходов велико. При отрицательной полуволне в работу включаются диоды 2 и 4. Первый перенаправляет отрицательную полуволну на положительный выход, второй служит минусом. На этом этапе запираются приборы 1 и 3. В результате отрицательная полуволна не пропадает, а просто переворачивается:

Результат работы мостового выпрямителя

Вот так при помощи трех дополнительных полупроводников мы повысили эффективность выпрямления вдвое. Конечно, напряжение на выходе все равно пульсирующее, но с такой пульсацией легко справится сглаживающий конденсатор относительно небольшой емкости.

к содержанию ↑

Как найти диодный мост на плате

Прежде чем прозвонить диодный мост, его необходимо сначала найти на плате. Для этого, конечно, нужно знать, как он может выглядеть. Внешний вид у него зависит от разновидности корпуса. Выпрямители могут состоять как из четырех отдельных полупроводников, впаянных рядышком, так и из диодов, собранных в одном корпусе. Такой сборный прибор так и называют – выпрямительная сборка. Вот лишь несколько видов таких сборок:

Внешний вид выпрямительной диодной сборки

Несмотря на обилие форм, распознать интегральный диодный мост несложно. Он, как ты заметил, четырехвыводной, и два его вывода отмечены знаками «+» и «-». Это выход выпрямителя. На входные выводы подается переменное напряжение, поэтому они обозначаются символом «~», буквами «АС» (аббревиатура от английского «переменный ток») либо могут не обозначаться совсем.

Располагается диодный мост рядом с проводами подачи переменного напряжения: с трансформатора либо для импульсных блоков питания непосредственно из розетки (сетевой шнур).

Как правило, рядом с выпрямителем ставится сглаживающий электролитический конденсатор – такой бочонок относительно больших размеров.

На рисунках, приведенных ниже, выпрямительные диодные мосты обозначены зеленой стрелкой:

Примеры расположения выпрямительных диодных сборок и мостов на дискретных элементах к содержанию ↑

Как проверить диодный мост

Проверить диодный мост можно двумя способами:

  1. При помощи тестера (мультиметра).
  2. При помощи лампочки.

Первый способ, конечно, предпочтительнее: он весьма точен и безопасен для диодного моста. Но если с мультиметром проблемы, то можно воспользоваться лампой от карманного фонаря и батарейкой на напряжение 5-12 В.

Теперь если диодный мост найден, прежде всего нужно провести внешний осмотр всей платы устройства. Элементы должны иметь естественный цвет, не быть обуглены или разрушены. Осмотри место пайки и целостность дорожек: важно, чтобы ничего не отпаялось и не лопнуло. Заодно внимательно осмотри электролитические конденсаторы (те самые бочонки). Они тоже должны быть в порядке: не поврежденные и не вздувшиеся. Если какой-то конденсатор вздулся или взорвался, его надо выпаять  — все равно он потребует замены, чтобы не мешал проведению измерений.

Если конденсатор взорвался, после его демонтажа всю плату нужно тщательно промыть спиртом. Разлетевшиеся части конденсатора – это электролит, который не только проводит ток, но и имеет свойства кислоты.

Прозвонка диодного моста при помощи тестера

Теперь переходим к проверке, или, как говорят, к прозвонке диодного моста, которую нередко приходится проводить  в два этапа:

  1. Предварительная прозвонка на месте.
  2. Точная проверка.

Первый этап удобен тем, что диодный мост можно не выпаивать, а проверять его прямо в схеме. Второй метод более трудоемок, но в случае неудачи с первым вариантом поможет провести точную проверку.

Для работы нам понадобится тестер: стрелочный или цифровой. В первом случае прибор должен уметь измерять сопротивление, во втором – иметь режим проверки полупроводников. Этот режим обозначается значком диода:

Проверить диодный мост можно лишь в этом положении переключателяНикогда не проверяй полупроводниковые приборы цифровым тестером в режиме измерения сопротивления. В этом режиме практически все подобные приборы проводят измерение переменным током, и прозвонка полупроводников ничего не покажет.
Прозвонка диодного моста на месте

Итак, стрелочный прибор переводим в режим сопротивления на предел измерения около 1 кОм, цифровой включаем на проверку диодов. Теперь вспоминаем схему диодного моста:

Электрическая схема диодного моста

Твоя задача — прозвонить каждый из диодов, подключив к нему щупы тестера сначала в одной, а потом в другой полярности. Как видно из схемы, добраться до каждого диодика в отдельности не составляет труда, достаточно лишь выбрать соответствующие ножки сборки. Если выпрямитель собран на отдельных полупроводниках, проблемы вообще нет: просто прозванивай каждый, касаясь щупами прибора его выводов.

Что говорят измерения после прозвонки? Для каждого из отдельных полупроводников результат измерений должен быть следующим: в одном направлении тестер показывает маленькое сопротивление (значение около 200-700 Ом), в другом невозможно прозвонить вообще – прибор показывает «бесконечность».

На самом деле цифровой тестер в режиме проверки диодов показывает не сопротивление цепи, а величину падения напряжения на открытом диоде. Это имеет большое значение для измерения параметров полупроводников, но совершенно не существенно для прозвонки. Таким образом, алгоритм работы с любым типом тестера одинаков, а напряжение падения можешь принимать хоть за милливольты, хоть за Омы.

Если самостоятельно вычислить каждый из диодов по выводам тебе сложно, то ориентируйся на картинку ниже, в которой в качестве примера показана прозвонка диодной сборки GBU25M.

Прозвонка диодного моста при помощи мультиметра

Обрати внимание, что цифры на экране тестера, изображенного на рисунке, условны. Падение напряжения на диоде и его сопротивление могут колебаться и зависят от типа полупроводника и его рабочего напряжения.

Точная проверка

Если результаты твоих измерений совпали с теми, которые описал я, то диодный мост можно считать исправным. Но если что-то пошло не так и ты не получил желаемых результатов, то диодный мост придется выпаять и провести проверку еще раз. Дело в том, что большинство схемотехнических решений предусматривают «обвязку» выпрямителя дополнительными элементами: конденсаторами, фильтрами, катушками и пр. Все это может внести искажения в измерения, и ты просто не увидишь, почему и что не так.

Включаем паяльник и выпаиваем диодный мост. Если он состоит из отдельных диодов, то их достаточно отпаять лишь с одной стороны, приподняв по одной ножке каждого диода над платой. Теперь проводи повторное измерение. Методика та же, что и в первом случае: каждый из диодов прозванивай в обе стороны, меняя полярность подключения щупов прибора.

Если и сейчас показания прибора не соответствуют норме, можно с полной уверенностью сказать, что сборка или отдельный диод неисправны. Если в обоих направлениях измерения высокие значения сопротивления, переход диода выгорел, он в обрыве. Звонится в обе стороны – диод пробит, замкнут накоротко. Если пробита диодная сборка, то придется заменить ее целиком. Если диоды стоят отдельно, достаточно заменить неисправный прибор однотипным.

В Интернете полно поисковых запросов типа «как проверить диодный мост индикаторной отверткой». Индикаторная отвертка, точнее, указатель напряжения предназначен для абсолютно других целей, и проверять диоды с его помощью не только бессмысленно, но и опасно!
Прозвонка моста индикаторной лампой

Если в твоем распоряжении не оказалось мультиметра, то для проверки диодного моста можно обойтись и подручными средствами: лампочкой и батарейкой. Тебе понадобится батарейка или кассета с несколькими пальчиковыми батарейками с общим напряжением 5-12 В и маломощная лампочка накаливания приблизительно с таким же, как у батареи, напряжением питания.

Лампу нужно брать минимальной мощности, чтобы не сжечь диод чрезмерно большим током. Подойдет, к примеру, лампочка от маломощного карманного фонаря. Если в качестве батареи ты используешь аккумулятор на 12 В, то подойдет и лампочка от подсветки приборной панели или габаритных фар («подфарников»).

Ты, конечно, помнишь, что диод проводит ток в одну сторону, поэтому взгляни на две предложенные мной схемы:

Схема проверки диода при помощи лампы накаливания

На схеме слева диод включен в прямом направлении и пропускает ток – лампа должна загореться. На правом рисунке диод включен в обратном направлении и тока не пропускает – лампа погашена. Понял идею? Собирай тестер и щупами А1 и А2 прозванивай диодный мост, ориентируясь не на экран мультиметра, а на лампу. Горит – маленькое сопротивление, погашена – большое. Вот и вся хитрость.

к содержанию ↑

Проверка диодного моста генератора автомобиля

Если у тебя есть автомобиль, то тебя наверняка заинтересует этот раздел статьи. Выход из строя генератора авто – серьезная проблема, решение которой стоит немалых денег. Но и тут причиной поломки может оказаться неисправность диода выпрямительного моста, который установлен в генераторе. А это значит, что вопрос можно попытаться решить своими силами. Взглянем на упрощенную схему генератора:

Схема диодного моста генератора автомобиля

Перед тобой такой же диодный мост, только трехфазный, с шестью, а не с четырьмя диодами. Это означает, что прозвонить его не составит никакого труда!

Итак, разбирай генератор и снимай диодный мост, который выглядит примерно вот так:

Диодный мост автомобильного генератора

Зелеными стрелками я отметил силовые диоды, но еще есть три вспомогательных, они помечены красными стрелками. Звонить будем и те и другие – все на виду и легкодоступны.

Промывай подковку в бензине, чтобы смыть всю грязь и масло, которые могут быть причиной неисправности. Когда мост высохнет, начинай прозванивать каждый диод, используя методику, описанную выше. Для работы можно использовать как мультиметр, так и лампу от габаритов в комплекте с автомобильным аккумулятором.

Обрати внимание! Диоды, стоящие на разных подковках, только с виду одинаковые. На самом деле у одних на центральном выводе анод, у других – катод. Это сделано для того, чтобы диоды можно было расположить на одной подковке, одновременно исполняющей роль радиатора, без изолирующих прокладок. к содержанию ↑

Техника безопасности

Подавляющее большинство современной аппаратуры имеет импульсные высоковольтные блоки питания. Это означает, что диодные мосты в них работают под напряжением до 300 В. Поэтому, прежде чем начать измерение, отключи прибор от сети и, главное, разряди сглаживающие электролитические конденсаторы, которые могут «держать» опасный для жизни заряд часами. Для наглядности я пометил их красными стрелками:

Плата блока питания ПК с диодным мостом и сглаживающими конденсаторами 

Чтобы разрядить их, замкни на секунду выводы конденсатора отверткой, держа ее за изолирующую ручку. В противном случае ты не только сожжешь мультиметр, но и можешь попасть под смертельное напряжение.

И последний совет: после ремонта прибора не спеши втыкать сетевую вилку в розетку. Для начала включи его в сеть через лампу накаливания мощностью 150-200 Вт. Если все сделано правильно, лампа будет едва светиться. О неудавшемся ремонте лампа просигнализирует тебе ярким светом в полный накал, указывающим на короткое замыкание.

Делая всевозможные сетевые переключения, береги глаза. Очень многие элементы импульсных блоков питания при неудачном ремонте способны взрываться не хуже осколочной гранаты. А разрыв электролитического конденсатора, как я уже писал выше, грозит огромным разлетом не только осколков алюминия и клочьев бумаги, но и разбрызгиванием кислоты.

Вот ты и научился проверять исправность диодных мостов. Надеюсь, в будущем эти знания будут полезны и сохранят не только твои деньги и время, но и нервы. Провести самостоятельную дефектовку электронного прибора, а затем и его ремонт – это круто. Не так ли? Пиши ответ в комментариях

Как проверить диодный мост мультиметром ⋆ diodov.net

Чтобы более осознанно понималь, как проверить диодный мост мультиметром, рекомендую прежде ознакомиться со статьей, как проверить диод.

Диодный мост предназначен для выпрямления переменного напряжения в постоянное, а точнее говоря, в пульсирующее.

Он может иметь разную форму корпуса и расположение выводов. Хотя в преобладающем большинстве их всего четыре: два – вход и два – выход. В любом случае диодный мост состоит из четырех диодов, расположенных в одном корпусе определенным образом. Такая схема соединения называется мостовой. Отсюда и название данного полупроводникового прибора.

Методика проверки исправности диодного моста заключается в проверке исправности его отдельных четырех диодов.

Согласно мостовой схемы, одна пара полупроводниковых приборов соединена между собой анодами, а вторая – катодами. В точке соединения катодов образуется положительный потенциал «+». А в точке соединения анодов – отрицательный потенциал «-». К двум оставшимся точкам подводят переменный ток «~». Соответствующие обозначения наносятся на корпус мостового выпрямителя или диодного моста.

Теперь, глядя на выше приведенную схему, становится достаточно просто понять, как проверить диодный мост мультиметром. Переводим прибор в режим «прозвонки» и проверяем каждый из четырех диодов выше рассмотренным способом. Схема помогает понять, каким образом устанавливать измерительные щупы.

Как проверить диодный мост мультиметром в схеме

Рассмотрим, как проверить диодный мост мультиметром, не выпаивая его из платы. Прежде всего, нужно подать питание на схему. И по отношению входного и выходного напряжений можно определить характер неисправности данного электронного прибора. Если он исправен, то выпрямленное напряжение будет несколько выше входного переменного.

Принципиально различают два вида неисправности диодного моста: обрыв и пробой одного или нескольких диодов выпрямительного моста.

В случае обрыва, например VD1, ток в один полупериод, соответствующей работе пары VD1 и VD3, протекать не будут, поскольку образуется разрыв электрической цепи. Это приведет к резкому снижению величины выпрямленного напряжения Ud. Однако, если схема работает без нагрузки, то данный вид неисправности можно и не заметить, так как после выпрямителя чаще всего установлен конденсатор и он в отсутствии нагрузки заряжается до амплитудного значения выпрямленного напряжения. Поэтому следует быть внимательным в данном случае.

В случае пробоя и короткого замыкания, например того же VD1, в один полупериод вторичная обмотка трансформатора окажется замкнутой накоротко. В результате этого будет происходить интенсивный нагрев VD3, что приведет к повышенному нагреву всего диодного моста. А также будет нагреваться обмотка вторичная обмотка и сам трансформатор. По разнице напряжений здесь судить трудно о характере неисправности. Так как при закороченной обмотке напряжение на ней в соответствующий полупериод также равно почти нулю. Поэтом и на выходе диодного моста в тот же полупериод оно будет равно почти нулю, а соответственно снизится и его среднее выпрямленное значение.

Также при данной неисправности может сработать предохранитель, установленный в первичной обмотке трансформатора, поскольку возрастет ток в цепи трансформатора. Надеюсь, теперь стало понятно, как проверить диодный мост мультиметром.

Как проверить диодный мост?

Диодный мост — важный элемент в цепи питания любого устройства, без него редко обходится работа любого блока питания или выпрямителя.  Процесс проверки диодного моста будет интересный не только радиолюбителям, но и автомобилистам. Состоит это устройство из четырех диодов, собранных  по мостовой схеме, и может быть выполнено как в едином корпусе, так с помощью отдельных диодов. В автомобиле мост состоит из шести диодов, если генератор трехфазный. О том, как проверить диодный мост читаем далее.

Более подробно о принципе работы диодного моста можно ознакомиться в предыдущей нашей статье.

В случае, если мост состоит из отдельных диодов, необходимо поочередно их выпаивать и проверять. Принцип проверки детально читаем в статье о том, как проверить диод.

Пример того, как проверить диодный мост мы покажем на диодной сборке. Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком. Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе.  Она поможет протестировать каждый диод и не запутаться с выводами.

Тест диода D1 – выводы 1;3. Тест диода D2 – выводы 3;4. Тест диода D3 – выводы 1;2. Тест диода D4 – выводы 2;4.

В данном случае все диоды работают исправно, такой диодный мост рабочий.

Есть еще несколько способов, как проверить диодный мост если нет под рукой мультиметра. Например, стоит подать постоянное напряжение на вход диодного моста и измерить его потом на выходе. Поменяв после этого полярность напряжения, на входе смотреть на показатели вольтметра. Если показатели напряжения не изменяются в зависимости от полярности, в принципе можно сказать, что мост выполняет свою функцию.

Как проверить исправность диодного моста — пошаговая инструкция

Во многих устройствах, работающих от сети 220 В, установлен диодный мост. Это устройство, состоящее из четырех (для однофазной сети) или шести (для трехфазной) полупроводниковых кремниевых диодов. Оно нужно для преобразования переменного тока в постоянный. На его вход подается переменный ток, на выходе получается пульсирующее напряжение постоянное по знаку. Данные элементы схемы часто выходят из строя, утягивая за собой предохранитель. Давайте разберемся, как выполняется проверка диодного моста на исправность разными способами.

Что нужно знать о диодных мостах

Для начала мы рассмотрим, какими бывают и что внутри диодного моста. Встречаются данные элементы схемы в двух исполнениях:

  1. Из дискретных (отдельных) диодов. Обычно распаяны на плате и соединены дорожками в правильную схему.
  2. Диодные сборки. Сборки могут представлять собой как однофазные мосты для выпрямления обоих полупериодов переменного напряжения, так и сборки из двух диодов, соединенные в цепь общим катодом или анодом и другие варианты включения.

В любом случае выпрямительный однофазный диодный мост состоит из четырех полупроводниковых диодов, соединенных между собой последовательно-параллельным образом. Переменное напряжение подается на две точки, в которых соединены анод с катодом (разноименные полюса диодов). Постоянное напряжение снимается с точек соединения одноименных полюсов: плюс с катодов, минус с анодов.

На схеме место подключения переменного напряжения обозначено символами AC или «~», а выходы с постоянным напряжением «+» и «-«. Зарисуйте себе эту схему, она нам пригодится при проверке.

Если представить реальный диодный мост и совместить его с этой схемой получится что-то вроде:

Расположение диодного моста на плате и меры предосторожности

Диодные мосты устанавливаются в блоках питания как импульсных так и трансформаторных. Стоит отметить, что в импульсных блоках, которые сейчас используются во всей бытовой технике, мост установлен на входе 220В. На его выходе напряжение достигает 310В — это амплитудное напряжение сети. В трансформаторных блоках питания устанавливаются они в цепи вторичной обмотки обычно с пониженным напряжением.

Если устройство не работает и вы обнаружили сгоревший предохранитель, не спешите включать прибор после его замены. Во-первых, при наличии проблем на плате предохранитель сгорит повторно. Такой блок питания нужно включать через лампочку.

Для этого возьмите патрон и вкрутите в него лампу накаливания на 40-100 Вт и подключите её в разрыв фазного провода для подключения к сети. Если вы собираетесь часто ремонтировать блоки питания, можно сделать удлинитель с патроном, установленным в разрыв питающего провода для подключения лампы, это поможет сохранить ваше время.

Если на плате есть короткое замыкание — при включении в сеть через неё потечет высокий ток, перегорит предохранитель или дорожка на плате, или провод, или выбьет автомат. Но если мы вставили в разрыв лампочку, сопротивление спирали которой ограничит ток, она загорится во весь накал, сохранив целостность всего вышеперечисленного.

Если короткого замыкания нет или блок исправен допустимо либо легкое свечение лампы, либо полное его отсутствие.

Простейшая и грубая проверка

Нам понадобится индикаторная отвертка. Она стоит копейки и должна быть в наборе инструментов в каждом доме. Нужно просто прикоснуться сначала ко входу 220В выпрямителя, если на фазном проводе загорится индикатор, значит напряжение присутствует, если нет, проблема явно не в диодном мосте и нужно проверить кабель. При наличии напряжения на входе проверяем напряжение на плюсовом выходе выпрямителя, оно в этой точке может доходить до 310 В, индикатор вам его покажет. Если индикатор не светится — диодный мост в обрыве.

К сожалению, больше ничего мы узнать с помощью индикаторной отверткой не сможем. О том, как пользоваться индикаторной отверткой, можете узнать из нашей статьи.

Прозвонка диодного моста мультиметром

Любую деталь на плате можно выпаять для проверки или прозвонить не выпаивая. Однако точность проверки в таком случае снижается, т.к. возможно, отсутствие контакта с дорожками платы, при видимой «нормальной» пайке, влияние других элементов схемы. К диодному мосту это тоже относится, можно его не выпаивать, но лучше и удобнее для проверки его выпаять. Мост, собранный из отдельных диодов, довольно удобно проверять и на плате.

Почти в каждом современном мультиметре есть режим проверки диодов, обычно он совмещен со звуковой прозвонкой цепи.

В этом режиме выводится падение напряжение в милливольтах между щупами. Если красный щуп подсоединен к аноду диода, а черный к катоду, такое подключение называется в прямом или проводящем направлении. В этом случае падение напряжения на PN-переходе кремниевого диода лежит в диапазоне 500-750 мВ, что вы можете наблюдать на картинке. Кстати на ней изображена проверка в режиме измерения сопротивлений, так тоже можно, но есть и специальный режим проверки диодов, результаты будут, в принципе, аналогичны.

Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.

Важно! Диоды Шоттки имеют меньшее падение напряжения, порядка 300 мВ.

Есть еще экспресс проверка диодного моста мультиметром. Порядок действий следующий:

  1. Ставим щупы на вход диодного моста (~ или AC), если сработала прозвонка – он пробит.
  2. Ставим красный щуп на «–», а красный на «+» — на экране высветилось значение около 1000, меняем щупы местами – на экране 1 или 0L, или другое высокое значение — диодный мост исправен. Логика такой проверки в том, что диоды соединены последовательно в две ветви, обратите внимание на схему, и они проводят ток. Если плюс питания подан на – (точка соединения анодов), а минус питания на «+» (точка соединения катодов), это и происходит при прозвонке. Если один из диодов в обрыве, ток может потечь по другой ветке и вы можете сделать ошибочные измерения. А вот если один из диодов пробит – на экране высветится падение напряжения на одном диоде.

На видео ниже наглядно показано, как проверить диодный мост мультиметром:

Полная проверка диодного моста

Также проверить диодный мост мультиметром можно по следующей инструкции:

  1. Устанавливаем красный щуп на «–», а черным по очереди касаемся выводов, к которым подключается переменное напряжение «~», в обоих случаях должно быть порядка 500 на экране прибора.
  2. Ставим черный щуп на «–», красным касаемся выводов «~ или AC», на экране мультиметра единица, значит, диоды не проводят в обратном направлении. Первая половина диодного моста исправна.
  3. Черный щуп на «+», а красным касаемся входов переменного напряжения, результаты должны быть как в 1 пункте.
  4. Меняем щупы местами, повторяем измерения, результаты должны быть как в пункте 2.

То же самое можно сделать «цэшкой» (универсальный измерительный прибор советского производства). Как проверить диодный мост стрелочным мультиметром, рассказывается на видео:

Кстати, проверку можно выполнить вообще без тестера – батарейкой и контрольной лампочкой (или светодиодом). При правильном включении диода ток потечет через лампочку и она засветится.

В заключение хотелось бы отметить, что диодные мосты устанавливаются повсюду: в зарядном устройстве, сварочном аппарате, на инверторе, в блоках питания и т.д. Благодаря описанной методике вы сможете проверить диоды на работоспособность в домашних условиях.

Будет полезно прочитать:

Как проверить диодный мост мультиметром



Диодный мост – электрическое устройство, используемое в современной электронике, люминесцентных лампах, сварочных аппаратах, автомобильных генераторах для выпрямления переменного тока, поступающего от источника, и получения постоянного.

Содержание статьи

В однофазной электрической сети в состав мостовой схемы входят 4 кремниевых выпрямительных или 4 диода Шоттки. В трехфазной сети в мост соединяют 6 полупроводников. Эти элементы часто выходят из строя, провоцируя сгорание предохранителя. После замены предохранителя необходимо проверить работоспособность полупроводников. Существует несколько вариантов того, как проверить диодный мост, выбор зависит от вида схемы. Диоды могут располагаться дискретно или представлять собой заводскую сборку, в которой все элементы находятся в одном корпусе.

Как прозвонить диодный мост из дискретно расположенных диодов

Все детали мостовой схемы можно прозвонить без выпайки. Для этого необходим мультиметр, в котором есть режим проверки диодов, обычно совмещаемый со звуковой прозвонкой. Суть проверки заключается в измерении разности напряжений между щупами.

Как правильно проверить исправность диодного моста тестером:

  • Для начала осуществляют прямое подключение прибора. Для этого щуп красного цвета подсоединяют к аноду, а черного – к катоду. При таком подключении ток протекает свободно. Для кремниевого диода падение напряжения на p-n-переходе составляет примерно 500-700 мВ. Для диодов Шоттки падение напряжения на переходе между зонами ниже и равно примерно 300 мВ.
  • Прямое подключение диодного моста

  • Далее осуществляют обратное подключение. Красный щуп подсоединяют к катоду, а черный – к аноду. Для исправного полупроводника значение падения напряжения будет равно 1 или более 1000 (обычно 1500).
  • Обратное подключение диодного моста

Если в результате проверки в обоих направлениях наблюдаются высокие значения или срабатывает звуковой сигнал, то диодный мост оборван.

Как проверить диодный мост в трансформаторном блоке питания с помощью лампочки

Для этого способа понадобится лампа накаливания мощностью до 100 Вт, вкрученная в патрон. Лампу подключают в разрыв силового фазного провода. Если на плате произошло короткое замыкание, то при включении устройства в сеть перегорит предохранитель, сам провод или выбьют автоматические выключатели. Если провести проверку с использованием лампочки накаливания, то подобных неприятностей можно избежать. При наличии короткого замыкания лампочка, включенная в сеть, загорится ярким светом. Она не сгорит, поскольку сопротивление спирали ограничит ток. Если же электронные компоненты платы исправны, то лампочка не загорится совсем или будет наблюдаться слабое свечение.

Пробой диодного моста

Простая проверка целостности диодного моста трансформаторного блока питания

Если мы выяснили с помощью лампочки, что на плате существуют проблемы, с помощью индикаторной отвертки можно выяснить, есть ли обрыв на диодном мосту. Если на входе в выпрямитель на фазном проводе загорается индикатор, проводим дальнейшую проверку. Если же индикатор не загорелся, то проблема не в диодной схеме, а в силовом кабеле. Индикатором проверяют наличие напряжения на плюсовом выходе выпрямителя. Если оно присутствует, то диодный мост не оборван. Большего количества информации при такой проверке мы не получим.

Пробоя диодного моста нет

Как точно проверить диодную сборку: подробный анализ

Для проверки понадобится мультиметр, имеющий режим проверки диодов.

Этапы проверки:

  • Тестирование начинают с диодов 1 и 2. Для этого красный щуп тестера подключают к выводу со знаком «-». Над двумя центральными выводами имеется маркировка AC или ̴. Черный щуп по очереди подключают сначала к одному такому выводу, а затем ко второму. Это прямое включение, при котором ток протекает свободно. На дисплее цифрового мультиметра отобразится значение падение напряжения на переходе p-n при прямом включении. В зарубежных даташитах эта величина обозначается как Vf. Для кремниевых диодов она находится в пределах 0,4-0,7 В. Для полупроводников Шоттки она ниже, и равна примерно 0,3 В. Если на измерительном приборе отобразились эти значения, то диодная сборка исправна.
  • Для уточнения результатов проверки диодов 1 и 2 проводят обратное подключение. Для этого к выводу «-» подключают черный щуп (минусовый). Красный щуп поочередно подводят к выводам, промаркированным AC или ̴. На дисплее должна быть единица, свидетельствующая о высоком сопротивлении и отсутствии обратного тока. Если это так, то исправность диодов 1 и 2 подтверждена.
  • Далее проверяют проверку диодов 3 и 4 при условии прямого подсоединения. Для этого к плюсу подключают черный щуп, а красный по очереди подводят к выводам AC. На дисплее должно отображаться падение напряжения на p-n переходе, о котором подробно было рассказано в первом пункте.
  • Для подтверждения результата к плюсу подключают красный щуп, а черный – к выводам AC. На дисплее должна быть единица.

Если диодная сборка благополучно пройдет эту проверку, можно с уверенностью сказать, что все элементы исправны.

Как проверить диодный мост генератора

Диодный мост генератора

Диодный мост генератора автомобиля или мотоцикла предназначен для выпрямления переменного тока, вырабатываемого генератором, и получения постоянного тока для зарядки АКБ и других потребителей электропитания. Неисправность диодного моста приводит к полному исчезновению или значительному уменьшению количества тока, вырабатываемого генератором. Наиболее точные результаты можно получить на СТО – на стенде с использованием осциллографа.

Один из вариантов простой проверки полупроводников – прозвонка с помощью мультиметра. Однако это ненадежный способ, поскольку нагрузка у прибора совсем небольшая, поэтому неисправность может быть не выявлена.

Для проверки диодного моста генератора под нагрузкой используют контрольную лампочку, это может быть обычная автомобильная лампа 12 В.

Выпрямительный блок состоит из двух алюминиевых пластин, объединенных в единую конструкцию. В каждую из них впаяны по 3 диода. Положительные и отрицательные диоды спаяны попарно. Проверка мостовой схемы на короткое замыкание (КЗ) между пластинами производится следующим способом:

  • Положительный провод от лампы подсоединяют к верхней пластине, а отрицательный – к нижней. Если лампочка не загорелась, то КЗ отсутствует.
  • Полярность меняют. При отсутствии КЗ лампочка загорается.
  • Положительные полупроводники на пробой и обрыв проверяют прижатием плюсового провода от лампочки к верхней пластине. Минус поочередно подсоединяют к точкам соединения полупроводников. Если схема исправна, лампочка не горит. При смене полярности лампочка должна гореть.
  • Проверку отрицательных диодов проводят прижатием отрицательного провода к нижней пластине, а положительного – к точкам соединения полупроводников. При исправной схеме лампочка не горит, при смене полярности она должна загореться.

Видео: как проверить диодный мост мультиметром

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

-метровая проверка диода | Диоды и выпрямители

Функциональность диодной полярности

Умение определять полярность (катод или анод) и базовые функции диода является очень важным навыком для любителя электроники или технического специалиста. Поскольку мы знаем, что диод, по сути, представляет собой не что иное, как односторонний клапан для электричества, имеет смысл проверить его односторонний характер с помощью омметра постоянного тока (работающего от батареи), как показано на рисунке ниже.При одностороннем подключении к диоду измеритель должен показывать очень низкое сопротивление в точке (а). При обратном подключении к диоду он должен показывать очень высокое сопротивление в точке (b) («OL» на некоторых моделях цифровых счетчиков).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный провод является катодом, а красный — анодом (для большинства счетчиков) (b) Обратные выводы показывают высокое сопротивление, указывающее на обратное смещение.

Определение полярности диода?

Использование мультиметра

Конечно, чтобы определить, какой конец диода является катодом, а какой анодом, вы должны точно знать, какой щуп измерителя положительный (+), а какой отрицательный (-) при установке на «сопротивление». или «Ом».В большинстве цифровых мультиметров, которые я видел, красный провод становится положительным, а черный — отрицательным, когда он настроен на измерение сопротивления, в соответствии со стандартным соглашением о цветовом коде электроники. Однако это не гарантируется для всех счетчиков. Многие аналоговые мультиметры, например, на самом деле делают свои черные выводы положительными (+), а красные отрицательными (-) при переключении на функцию «сопротивление», потому что таким образом его проще изготовить!

Проблемы проверки диодов омом измеритель

Одна из проблем при использовании омметра для проверки диода заключается в том, что полученные показания имеют только качественное, а не количественное значение.Другими словами, омметр только говорит вам, как проходит диод; индикация низкого значения сопротивления, полученная при проведении, бесполезна.

Если омметр показывает значение «1,73 Ом» при прямом смещении диода, эта цифра 1,73 Ом не представляет никакой реальной величины, полезной для нас как техников или проектировщиков схем. Он не представляет собой ни прямое падение напряжения, ни какое-либо «объемное» сопротивление полупроводникового материала самого диода, а скорее является показателем, зависящим от обеих величин, и будет существенно различаться в зависимости от конкретного омметра, используемого для снятия показаний.

Проверка диодов в цифровом мультиметре s

По этой причине некоторые производители цифровых мультиметров оснащают свои измерители специальной функцией «проверки диода», которая отображает фактическое прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерители работают, пропуская небольшой ток через диод и измеряя падение напряжения между двумя измерительными проводами. (рисунок ниже)

Счетчик с функцией «Проверка диодов» отображает прямое падение напряжения, равное 0.548 вольт вместо низкого сопротивления.

Прямое напряжение диода s Показание прямого напряжения, полученное с помощью такого измерителя, обычно будет меньше «нормального» падения 0,7 В для кремния и 0,3 В для германия, поскольку ток, обеспечиваемый измерителем, имеет тривиальные пропорции.

Альтернативы функции проверки диодов Если мультиметр с функцией проверки диодов недоступен или вы хотите измерить прямое падение напряжения на диоде при каком-то нетривиальном токе, схема на рисунке ниже может быть построена с использованием батарейка, резистор и вольтметр.

Измерение прямого напряжения диода без функции измерителя «проверка диода»: (a) Принципиальная диаграмма. (б) Наглядная диаграмма.

При обратном подключении диода к этой тестовой цепи вольтметр просто покажет полное напряжение батареи.

Если бы эта схема была разработана для обеспечения постоянного или почти постоянного тока через диод, несмотря на изменения прямого падения напряжения, ее можно было бы использовать в качестве основы прибора для измерения температуры, напряжение, измеренное на диоде, обратно пропорционально переходу диода. температура.Конечно, ток диода должен быть сведен к минимуму, чтобы избежать самонагрева (диод рассеивает значительное количество тепловой энергии), что может помешать измерению температуры.

Рекомендации Multimet ers

Имейте в виду, что некоторые цифровые мультиметры, оснащенные функцией «проверки диодов», могут выдавать очень низкое тестовое напряжение (менее 0,3 В) при настройке на обычную функцию «сопротивления» (Ом): слишком низкое, чтобы полностью разрушить область обеднения узел ПН.

Философия здесь заключается в том, что функция «проверка диода» должна использоваться для тестирования полупроводниковых устройств, а функция «сопротивление» — для всего остального. Используя очень низкое испытательное напряжение для измерения сопротивления, техническому специалисту легче измерить сопротивление неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, поскольку соединения полупроводниковых компонентов не будут смещены в прямом направлении при таких низких напряжениях.

Пример тестирования e

Рассмотрим пример резистора и диода, соединенных параллельно и припаянных на печатной плате. Как правило, перед измерением сопротивления необходимо было бы выпаять резистор из схемы (отсоединить его от всех остальных компонентов), иначе любые параллельно соединенные компоненты повлияли бы на полученные показания. При использовании мультиметра, который выдает очень низкое тестовое напряжение на щупы в режиме функции «сопротивление», на PN-переход диода не будет подано достаточное напряжение, чтобы стать смещенным в прямом направлении, и будет пропускать только незначительный ток. Следовательно, измеритель «видит» диод как обрыв (прозвонки нет) и регистрирует только сопротивление резистора.(Рисунок ниже)

Омметр с низким испытательным напряжением (<0,7 В) не видит диоды, что позволяет ему измерять параллельные резисторы.

Если бы такой омметр использовался для проверки диода, он показал бы очень высокое сопротивление (много мегаом), даже если бы он был подключен к диоду в «правильном» (смещенном в прямом направлении) направлении. (Рисунок ниже)

Омметр с низким испытательным напряжением, слишком низким для прямого смещения диодов, не видит диоды.

Сила обратного напряжения диода не так легко проверить, потому что превышение PIV нормального диода обычно приводит к разрушению диода.Специальные типы диодов, предназначенные для «пробоя» в режиме обратного смещения без повреждения (называемые стабилитронами ), которые тестируются с одной и той же схемой источника напряжения/резистора/вольтметра, при условии, что источник напряжения достаточно высокого значения, чтобы заставить диод перейти в область пробоя. Подробнее на эту тему в одном из следующих разделов этой главы.

ОБЗОР:

  • Для качественной проверки работы диода можно использовать омметр. Должно быть низкое сопротивление, измеренное в одном направлении, и очень высокое сопротивление, измеренное в другом.При использовании для этой цели омметра убедитесь, что вы знаете, какой щуп положительный, а какой отрицательный! Фактическая полярность может не соответствовать цветам проводов, как можно было бы ожидать, в зависимости от конкретной конструкции измерителя.
  • Некоторые мультиметры имеют функцию «проверки диода», которая отображает фактическое прямое напряжение диода при токе его проводимости. Такие измерители обычно показывают немного более низкое прямое напряжение, чем «номинальное» для диода, из-за очень малого тока, используемого во время проверки.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Проверка выпрямителей — Auto Electric International

CDT-200

CDT-200 — сверхточный прибор среднего объема, чрезвычайно точный тестер автомобильных выпрямителей и диодов. Он предназначен для быстрого, точного и простого в использовании тестирования всех критических параметров, связанных со стандартными и лавинными выпрямителями. Прочный промышленный дизайн и пользовательский интерфейс на базе ПК делают CDT-200 очень простым в использовании.Чрезвычайная точность достигается фильтрацией в реальном времени и цифровой обработкой. Тестер может измерять утечку до 10 наноампер. Реальные условия моделируются, чтобы максимизировать диагностические возможности. Кроме того, может быть выполнен анализ теплового сопротивления выпрямителей для обнаружения плохих соединений внутренних диодов и связанных с ними дефектов. Стандартные тесты диодов можно выполнить всего за 3 секунды для полного выпрямителя. Тестовая система может также проверять конденсаторы, встроенные во многие выпрямители.

Машина имеет программируемые тестовые профили, которые включают настройку машины с инструкциями по эксплуатации. Он также может отображать изображения выпрямителя с указанием неисправных диодов. Система тестирования также имеет режим настройки для настройки условий тестирования, инструментов и пределов. Результаты проверки неисправных диодов будут указывать их расположение на изображении выпрямителя для облегчения распознавания оператором. CDT-200 проверяет соединения перед началом фактического цикла. Это исключает возможность ложных результатов теста.Неисправные соединения также отображаются на графическом дисплее для облегчения поиска и устранения неисправностей. Статус Pass и Fail четко отображается после завершения цикла тестирования.

Измеряемые параметры:

  • Напряжение отключения, программируемое до 500 В
  • Испытательный ток пробоя 0–100 мкА
  • Ток утечки 0–20 мкА, (разрешение 1 наноампер) 900 измеряется при программируемом напряжении до 500 В
  • Падение напряжения на диоде 0–2.5 Вольт
  • Измерение теплового и динамического сопротивления
  • Программируемый ток нагрузки до 150 А в непрерывном режиме
  • Анализ шума обратного рассеяния

Полную информацию см. в D & V Electronics

Блог. ДИОДЫ

СОВЕТ ЭКСПЕРТА №5: ПРОВЕРКА/ПРОВЕРКА ДИОДОВ ВЫПРЯМИТЕЛЯ CP

Катодная защита Проблемы с блоком питания или выпрямителем являются причиной сбоев системы катодной защиты (CP) в 58% случаев.При поиске и устранении неисправностей неисправного выпрямителя CP наиболее распространенная проблема возникает с блоком выпрямителей. (Причины отказа выпрямителя: блок диодов выпрямителя – 85 %; счетчики, выключатели, предохранители – 12 %; трансформаторы, дроссели – 3 %)

Типы штабелей

Обычные выпрямители трансформаторного типа имеют однофазный двухполупериодный кремниевый блок с ручным управлением ответвлениями. Стеки Selenium требуют другого метода тестирования.

Функции диода

Диод по сути представляет собой электронный «обратный клапан».Это значение позволяет току течь в одном направлении и блокировать его в противоположном направлении. Этот символ является общим символом для диода. Как показано здесь, ток может течь слева направо, но блокируется справа налево.

 

Как проверить диод снаружи выпрямителя

Большинство цифровых мультиметров (DMM) имеют режим «проверки диодов». Она может находиться на циферблате совместно с другой функцией. В функции проверки диода измеритель обеспечивает небольшой фиксированный ток через проверяемый диод. Отображаемое на цифровом мультиметре значение представляет собой падение напряжения на диоде.

  • Убедитесь, что питание выпрямителя отключено, и что используются все меры предосторожности и надлежащие средства индивидуальной защиты.
  • Очень важно, чтобы диод был отключен от цепи, чтобы избежать параллельных токопроводящих дорожек. Для этого может потребоваться отключить один конец диода от цепи. Специальные методы тестирования выпрямительных диодов обсуждаются ниже.
  • Подсоедините измерительные провода цифрового мультиметра к обеим сторонам диода и запишите показания, отображаемые на цифровом мультиметре.Затем поменяйте местами измерительные провода и снова запишите отображаемое измерение.
  • На исправном диоде от 0,450 до 0,800 вольт «падает» в одном направлении и «размыкается» в противоположном направлении. «OL» — это типичный дисплей цифрового мультиметра для состояния разомкнутой цепи.
  • Когда диод выходит из строя, он выходит из строя либо из-за короткого замыкания, либо из-за обрыва цепи.
  • «Закороченный» диод показывает 0,000 В в обоих направлениях
  • Farwest Expert Tip 5 Проверка диодов выпрямителя CP 060820
  • «Открытый» диод будет отображать «OL» в обоих направлениях.

 

Проверка диодов в выпрямителе CP с передней панели

Отдельные диоды можно проверить с передней панели выпрямителя. Это хороший вариант, потому что получить физический доступ к стеку диодов (как обсуждалось выше) может быть сложно. В большинстве выпрямителей с воздушным охлаждением блок диодов расположен внизу и сзади в корпусе. В выпрямителях с масляным охлаждением блок диодов погружен в масло и редко доступен без извлечения стойки компонентов из масла, что может привести к беспорядку.

 

Подготовка к тестированию

Проверяемые диоды должны быть изолированы от других компонентов схемы. В выпрямителе CP это будет включать в себя главный трансформатор, анод или структурные цепи. Шаги по изоляции этих компонентов включают:

  1. Убедитесь, что питание переменного тока на выпрямителе отключено, питание заблокировано и отключено.
  2. Снимите одну из перемычек ответвлений регулировки напряжения (грубую или точную) на передней панели, чтобы изолировать трансформатор.
  3. Отсоедините положительный или отрицательный выходной кабель от выходного наконечника.
  4. Убедитесь, что вторичный выключатель переменного тока находится в положении «ВКЛ.». Если вместо автоматического выключателя используется предохранитель, убедитесь, что предохранитель установлен и находится в рабочем состоянии (не «перегорел»).

 

Проверка диодов

Установите цифровой мультиметр на функцию «проверки диодов». Убедитесь, что ваши кабели измерительных проводов находятся в хорошем рабочем состоянии.

См. тестовую схему и таблицу (ниже).Буква идентифицирует каждый отдельный диод, а также контрольные точки:

  • Диоды — от A до D
  • контрольных точек — от E до H.

Для проверки диода «А»:

  • Прикоснитесь к контрольным точкам E и H измерительными проводами цифрового мультиметра. Прочитайте дисплей цифрового мультиметра и запишите значения.
  • Поменяйте полярность измерительных проводов в контрольных точках E и H. Прочтите показания на дисплее и запишите значения.

Диод «А» находится в рабочем состоянии (исправен), когда показание между 0.450 — 0,800 в одной полярности и OL (обрыв цепи) в другой полярности. Закороченный диод будет показывать 0,000 в обоих направлениях.

Для проверки диодов B, C и D воспользуйтесь таблицей ниже.

Этот метод позволяет тестировать каждый отдельный диод без необходимости прямого доступа к физическому компоненту. Это реальное преимущество при поиске и устранении неисправностей переполненных выпрямителей с воздушным охлаждением или грязных масляных выпрямителей.

ВНИМАНИЕ! Большинство кремниевых стеков будут иметь разрядники для защиты от перенапряжения, установленные параллельно с входом переменного тока и выходом постоянного тока стека.Разрядник может быть установлен непосредственно на штабеле или отдельно сбоку штабеля. Если это так, и ваши тесты показывают, что два или более диода закорочены (неисправны), возможно, диоды в рабочем состоянии (исправны), но ограничитель перенапряжений закорочен.    На данный момент у вас нет другого выбора, кроме как найти способ получить доступ к физическим компонентам для тестирования отдельных диодов.

 

Как проверить диод [Полное руководство]

Диоды являются одним из наиболее часто используемых компонентов в электронных устройствах.Таким образом, чтобы убедиться, что диод подходит для конкретного (в соответствии с требованиями) использования, важно проверить диод. Мы можем проверить обычные диоды и стабилитроны с помощью цифрового или аналогового мультиметра.

Поскольку диоды используются в цепях для защиты, выпрямления и т. д., именно они первыми повреждаются в случае какой-либо неисправности в системе. Несколько примеров схем могут быть двухполупериодным выпрямителем, двухполупериодным выпрямителем, схемой драйвера светодиода. Эта причина дает еще более сильную причину всегда проверять диод перед его использованием.Кроме того, у нас есть два режима диода, а именно: режим прямой проводимости и режим обратной блокировки. Таким образом, оба из них должны быть проверены отдельно.

Как проверить диод

Можно проверить с помощью мультиметра. В практическом диоде у нас есть сопротивление как в прямом, так и в обратном направлении. Всегда лучше проверить схему перед ее сборкой. Но если мы этого не сделаем и результаты также не будут соответствовать нашим ожиданиям, мы можем запутаться в том, есть ли проблема в цепи или компоненты (диод, другие электронные устройства) не работают должным образом.

Диод лучше всего тестировать, когда он смещен в прямом направлении. Рассчитывается падение напряжения из-за его прямого сопротивления. В режиме прямого смещения диод действует как переключатель (если сопротивление не учитывать). Давайте теперь узнаем, как проверить диоды.

Проверка диодов

С цифровыми индикаторами

В настоящее время большинство цифровых мультиметров снабжены специальным диапазоном «проверки диодов». Это делается для обеспечения идеального измерения, поскольку другие напряжения могут не превысить потенциал прямого перехода диода (и, следовательно, отсутствие проводимости в прямом направлении).

Но тут возникает один вопрос: а что если у нас нет диапазона проверки диодов в цифровом мультиметре!

Что ж, у нас есть еще один метод, который может помочь проверить исправность диода. Мы могли бы установить мультиметр в режим сопротивления (метод омметра) и затем продолжить.

Разберемся с процедурой проведения проверки работоспособности диодов обоими способами.

С полигоном для проверки диодов в мультиметре

Для проверки диода используется следующая процедура:

  • Сначала определите две клеммы диода, а именно катод и анод.Кроме того, имейте в виду, что если анодное напряжение больше, чем катодное, то диод проводит в прямом направлении, а если меньше, то в обратном.
  • Пожалуйста, убедитесь, что все питание цепи отключено. Кроме того, если диод подключен к цепи переменного тока, он может накапливать заряды в конденсаторе или катушке индуктивности. Поэтому их необходимо разрядить перед проверкой диода.
  • Установите ручку цифрового мультиметра в соответствии с требованиями, т. е. напряжением переменного или постоянного тока.
  • Держите ручку в режиме проверки диодов (если доступно).
  • Возьмите выводы цифрового измерителя и держите на двух выводах диода, чтобы измерить напряжение на них. Запишите наблюдение.
  • Теперь, чтобы рассчитать обратное напряжение (реверсивный режим блокировки), поменяйте местами выводы измерителя и запишите наблюдение.

Следующий шаг — проанализировать данные и решить, готов диод стать частью схемы или нет. Мы проверяем, хорошо это или плохо!

Проверка диодов

Проведен анализ проверки диодов 

  • Из указанного значения просто проверьте падение напряжения при прямом смещении.Если он находится в пределах 0,7-0,1 для кремния, то диод исправен, иначе не подойдет. Для германия диапазон падения для того, чтобы он был хорошим диодом, составляет 0,3 0,05.
  • При реверсировании диода, если он показывает OL, то диод исправен (исправен). OL указывает на разомкнутую цепь/цепь. Это связано с тем, что исправный диод не проводит ток при обратном смещении. Так что это может быть еще одной проверкой того, является ли диод хорошим или плохим для здоровья
  • Если цифровой мультиметр показывает OL как при прямом, так и при обратном смещении, диод неисправен.
  • С другой стороны, может быть случай, когда цифровой мультиметр показывает отклонение при падении напряжения в обоих условиях смещения. Такой диод является короткозамкнутым диодом.

Проверка диода в режиме сопротивления

Давайте посмотрим, как определить, исправен ли диод, открыт (OL) или замкнут. Выполните следующие шаги для проведения теста.

  • То же, что и выше, идентифицируйте катодный и анодный выводы диода. Если

В Анод > В Катод – прямое смещение

В Анод < В Катод – обратное смещение

  • Сначала проверьте диод на наличие прямого смещения. Помните, что в этом случае требования к сопротивлению высоки. Это связано с тем, что ток течет в прямом направлении и, следовательно, требует высокого сопротивления (от 1 кОм до 10 МОм).
  • Кроме того, для обратного смещения требуется меньшее сопротивление, так как в идеале оно должно быть разомкнуто (без тока) при обратном направлении.
  • Теперь перед началом проверки диода убедитесь, что все источники питания выключены. Следовательно, диод должен быть свободен от любого напряжения, а также любой подключенный конденсатор или катушка индуктивности должны быть проверены на накопленное напряжение.Если он заряжен, разрядите его перед запуском.
  • В соответствии с требованиями схемы установите ручку мультиметра на переменный или постоянный ток.
  • Держите другую ручку в режиме сопротивления().
  • Теперь проверьте диод, подключив провода счетчика. Наблюдайте и записывайте показания.
  • Поменяйте местами провода, чтобы получить показания с обратным смещением. Наблюдайте и записывайте.
  • Исправный диод: если

в прямом режиме, диапазон сопротивления от 1K до 10M

и в обратном режиме цифровой счетчик показывает OL

оба имеют одинаковые или близкие значения.Если показания противоречат вышеуказанным условиям, то это тоже плохо.

Этот метод проверки сопротивления можно сделать более эффективным, если сравнить показания с уже проверенным исправным диодом.

Давайте теперь узнаем о тестировании некоторых конкретных диодов.

Тест стабилитрона

Стабилитрон — это тот, который также проводит при обратном смещении (если обратное напряжение больше, чем напряжение пробоя Зенера). Это требует некоторых модификаций предыдущей схемы тестирования.Ниже приведена процедура проверки стабилитрона:

.

Проверка стабилитрона

Процедура проверки диода

  • Как и в случае с диодом с p-n переходом, в первую очередь проверьте катодный и анодный выводы диода.
  • Цепь должна соответствовать показанной схеме.
  • Установите ручку цифрового мультиметра в режим напряжения и поместите выводы мультиметра на анод и катод для проверки диода.
  • Теперь медленно измените напряжение (в положительном направлении) и наблюдайте за индикатором.Наблюдаемое значение на измерителе также должно увеличиваться при увеличении входа. И при определенном значении (напряжении пробоя) показания счетчика должны выйти на насыщение (стать постоянным). Это означает, что после напряжения пробоя, несмотря на любое изменение на входе, значение на измерителе (выходе) остается постоянным.
  • Если это произойдет, то стабилитрон исправен, иначе нет.

Например, если напряжение пробоя составляет 3 В, а вы подаете питание 10 В, то измеритель также покажет значение только около 3 В.

Тест светодиодов (светоизлучающих диодов)

Этот светодиод несколько отличается от того, который мы изучали до сих пор (с точки зрения внешнего вида). Следовательно, чтобы определить его анодный и катодный выводы, нам нужно увидеть его длину. Более длинная ножка (вывод) является анодом, а более короткая называется катодом. Еще один способ проверить клеммы — посмотреть на поверхность светодиода. Сторона с более плоской поверхностью является катодом, а другая сторона — всего лишь анодом.

Тестирование светодиодов

Процедура проверки диода

  • Если в цепи есть диод, убедитесь, что питание выключено, а конденсаторы разряжены.
  • Вышеуказанным методом проверьте клеммы анода и катода.
  • Поместите щупы мультиметра так, чтобы диод находился в прямом смещении (красный щуп к аноду, а черный к катоду).
  • Теперь вам не нужно ничего делать, просто посмотрите, горит ли светодиод.Если он светится, то он здоров, иначе не здоров.

А теперь скажите можно ли проверить светодиод в обратном смещении? Считать!!

Конечно нет. Просто потому, что светодиод не работает при обратном смещении.

Проверка диода Шоттки

Подобно другим обычным диодам, он также ограничивает ток в одном направлении. Но у него более быстрое время отклика по сравнению с другими диодами того же семейства.

Проверка диодов Шоттки

Процедура проверки диода Шоттки

  • Обеспечьте катод и анод диода Шоттки.Та часть, которая ближе к закрашенной линии, является катодом, а другая сторона — анодом.
  • Подсоедините щупы мультиметра к клеммам диода. Красный щуп к аноду и черный к катоду, чтобы сделать его в прямом смещении.
  • Теперь мультиметр должен издать «жужжание» или «бип». Если да, то диод исправен, иначе неисправен.
  • Аналогичным образом измените подключение пробника, чтобы он работал в условиях обратного смещения.Снова внимательно попытайтесь прислушаться, если появится какой-либо звук. Если да, то диод неисправен и его необходимо заменить, а если нет, то он исправен.

Испытание диодов слабого сигнала

Диоды малых сигналов

Сигнальные диоды

— это те, которые работают с меньшей мощностью и более высокой частотой. Это делает их более полезными для целей переключения. Проверка этих малосигнальных диодов очень похожа на описанные выше методы. Единственная разница заключается в меньшем значении цифрового мультиметра всякий раз, когда подается вход.Кроме того, диапазон входного сигнала, который можно подать на эти диоды, меньше по сравнению с диодами с большим сигналом.

Испытание диодов с большим сигналом

Большие сигнальные диоды имеют сравнительно большую мощность и несколько меньшую частоту по сравнению с малыми сигнальными диодами. Следовательно, при тестировании диода диапазон напряжения выше, а также вход, который может быть подан на входные клеммы, имеет более широкий диапазон.

Процедура проверки малого/большого диода

  • Обеспечьте катод и анод диода.
  • Для прямого смещения держите красный щуп на аноде, а черный — на катоде.
  • Должно выдавать значение напряжения (в зависимости от номинала). Это показывает, что диод ведет себя как короткое замыкание, что и должно происходить. Запиши это.
  • Измените соединение и снова проверьте значение. Если он выдает «OL», то диод исправен, в противном случае его необходимо заменить, т. е. он неисправен.

Давайте теперь научимся тестировать диод с помощью аналогового измерителя.

Как проверить диод с помощью аналогового мультиметра

Здесь важно отметить, что ноль на шкале напряжения и сопротивления в аналоговом измерителе перепутан. Поэтому нам нужно поменять местами щупы счетчика. Как и для проверки диода в прямом смещении нам нужно подключить красный щуп к катоду, а черный к аноду. Точно так же мы можем поменять местами датчики, чтобы получить обратное смещение. Это главное отличие при тестировании диода цифровым и аналоговым измерителем.

Тестирование с помощью аналоговых счетчиков

Производитель указывает аналоговый диапазон измерителя, чтобы его можно было использовать, или уже проверенные хорошие значения диода можно взять в качестве эталона. Еще один важный момент, который следует отметить, заключается в том, что некоторые измерители используют сопротивление, а некоторые используют напряжение перехода. Так что вы должны иметь в виду это, прежде чем начать свой тест.

Нравится:

Нравится Загрузка…

Вы также можете увидеть

Проверка диодов

  • Изучив этот раздел, вы должны уметь:
  • • Описать методы проверки диодов с помощью цифровых или аналоговых мультиметров
  • • Распознать типичные неисправности диодов.
  • • Обрыв цепи.
  • • Короткое замыкание.
  • • Негерметичный.

Рис. 2.8.1 Цифровой счетчик

Мультиметр для проверки диодов

Диоды

можно проверить с помощью мультиметра. Обычно проверяется сопротивление диода как в прямом, так и в обратном направлении. Однако есть ряд моментов, о которых следует помнить при тестировании диодов.

С цифровыми индикаторами

Большинство цифровых мультиметров подходят для проверки диодов, и во многих случаях они имеют специальный диапазон «проверки диодов», обычно отмеченный символом диода. Этот диапазон следует всегда использовать при тестировании диодов или любых других полупроводниковых устройств. Причина этого в том, что измеритель проверяет диод, прикладывая напряжение к диодному переходу. Нормальные напряжения, используемые измерителем в других диапазонах сопротивлений, могут быть недостаточно высокими, чтобы преодолеть потенциал прямого перехода диода, и поэтому диод не будет проводить ток даже в прямом направлении. Это укажет на то, что диод был разомкнут (очень высокое сопротивление). Если используется диодный диапазон, тестовое напряжение, подаваемое измерителем, в большинстве случаев будет достаточно высоким, чтобы преодолеть потенциал прямого перехода, и диод будет проводить ток.Следовательно, в прямом направлении (положительный вывод измерителя к аноду диода, а отрицательный к катоду) можно измерить сопротивление диода.

Фактическое значение сопротивления будет зависеть от наклона прямой характеристики диода при напряжении, подаваемом измерителем, и поэтому будет варьироваться от устройства к устройству и от прибора к измерителю, поэтому точное значение дать невозможно. При измерении хорошего кремниевого диода (не подключенного к какой-либо цепи) можно ожидать показания в прямом направлении от 500 Ом до 1 кОм, аналогичные или немного меньшие для германиевых диодов.При перепутанных проводах измерителя следует ожидать выхода за пределы диапазона (бесконечность) или обрыва цепи (обычно на цифровом измерителе отображается что-то вроде «1», как показано на рис. 2.8.1).

Если диод уже включен в цепь, на измеренное сопротивление всегда при выключенной цепи будут влиять любые параллельные пути. Поэтому показания будут ниже указанных выше. Однако очень низкие или нулевые показания сопротивления могут указывать на короткое замыкание диода (наиболее распространенная неисправность диодов), что делает целесообразным, если не видно другой очевидной причины очень низких показаний, удалить по крайней мере один конец диода из цепи. цепи и повторно проверьте прямое и обратное сопротивление диода.

С аналоговыми измерителями

Рис.

2.8.2 Аналоговый измеритель

Если для тестирования используется аналоговый измеритель, следует помнить, что, поскольку ноль на шкале сопротивления и напряжения перепутаны, из-за внутренней работы измерителя полярность датчиков при использовании аналоговых счетчиков для измерения сопротивления также меняется на противоположную. по сравнению с цифровыми счетчиками. Поэтому при измерении сопротивления диода аналоговым измерителем в любом диапазоне ЧЕРНЫЙ провод положительный, а КРАСНЫЙ отрицательный.Это означает, что черный провод должен быть подключен к аноду, а красный к катоду, чтобы измерить ПРЯМОЕ сопротивление диода. Некоторые аналоговые счетчики имеют определенный диапазон тестирования диодов, но большинство аналоговых счетчиков вполне подходят для тестирования диодов. Наиболее подходящий аналоговый диапазон обычно указывается в инструкциях для пользователя, но, как и в случае с цифровыми счетчиками, необходимо проверить фактическое напряжение, используемое в испытательном диапазоне, чтобы понять его влияние на ожидаемое прямое и обратное сопротивления.

ПРИМЕЧАНИЕ: приведенный выше абзац относится только к настоящим аналоговым счетчикам, многие современные «аналоговые» модели, как правило, представляют собой цифровые счетчики с аналоговым дисплеем. В этом случае следует следовать методу, описанному для цифровых счетчиков. Какой счетчик у вас? Можно использовать простой тест сопротивления заведомо исправного диода; подключите черный провод «-ve» к катоду, а красный провод «+» к аноду. Если измеритель показывает ожидаемое прямое сопротивление, полярность проводов измерительного прибора не изменена.

Также вполне обычно измерение прямого сопротивления некоторых светодиодов, особенно таких, как синие светодиоды, которые имеют более высокий потенциал прямого перехода, кажутся очень высокими (бесконечными) во время тестирования, если напряжение измерителя в диапазоне диодов низкое, даже когда светодиод в порядке.Однако измеритель с тестовым напряжением около 3 В должен давать некоторое свечение светодиода. Также доступны некоторые мультиметры, которые вместо отображения сопротивления диода в диапазоне проверки диодов отображают потенциал перехода (в вольтах). Поэтому очень важно убедиться, что вы знаете, какие условия использует измеритель, прежде чем тестировать какие-либо полупроводники.

Рис. 2.8.3 Подключение цифрового измерителя


для проверки диода

Проведение тестов

На схеме ниже показано, как подключить цифровой измеритель для проверки диода.Есть несколько вещей, которые нужно помнить:

  • • Убедитесь, что вы используете диапазон диодов.
  • • С помощью цифрового измерительного прибора подсоедините черный провод к катоду, а красный к аноду (прямое смещение — около 1 кОм).
  • • Поменяйте местами соединения расходомера (обратное смещение — бесконечность показаний).

ПОМНИТЕ — Если вы используете аналоговый измеритель для измерения сопротивления, полярность измерительных проводов должна быть обратной.

НЕКОТОРЫЕ ПРИБОРЫ: при измерении сопротивления диода давайте показания, указывающие на потенциал перехода (в вольтах) вместо сопротивления диода (в Омах). ПРОВЕРЬТЕ ИНСТРУКЦИИ К ВАШЕМУ ПРИБОРУ, чтобы быть уверенным в том, что показывают показания прибора.

Идентификация соединений диодов

Рис. 2.8.4 Маркировка полярности диодов.

Катодное соединение диода маркируется различными способами. В случае мостового выпрямителя входные клеммы переменного тока и выходные клеммы постоянного тока обычно маркируются символом синусоиды и знаками плюс/минус соответственно, как показано на рисунке.

Мостовые выпрямители

можно испытывать как обычные диоды, если каждый диод тестируется отдельно.Выводы корпуса следует сравнить со схемой внутреннего расположения четырех диодов, как показано на рис. 2.8.4, чтобы вы могли проверить прямое и обратное сопротивление каждого диода. Одиночные диоды обычно маркируются полосой, обозначающей катод, но для выпрямителей со шпильками обычно на корпусе напечатан символ диода.

Индикация неисправности

Короткое замыкание

Диоды могут быть повреждены высоким напряжением, особенно диоды, работающие в устройствах с высоким напряжением или большой мощностью, таких как источники питания, и в результате обычно происходит короткое замыкание 0 Ом при измерении в любом направлении. При коротком замыкании диода в блоке питания могут протекать большие токи, что приводит к очевидным повреждениям, таким как «приготовление» диодов и/или перегорание предохранителей. Диоды короткого замыкания, которые явно не повреждены, показывают 0 Ом или очень низкое сопротивление как в прямом, так и в обратном направлении.

Обрыв цепи

Иногда диоды (особенно маломощные сигнальные диоды) могут размыкаться и показывать очень высокое сопротивление или бесконечность (обозначается как 1 на цифровых счетчиках) как в прямом, так и в обратном направлении.

Дырявый

Иногда может «течь» сигнальный диод. В то время как его прямое сопротивление может быть нормальным, его обратное сопротивление может быть ниже ожидаемой бесконечности. Этот тип неисправности обычно ограничивается небольшими сигнальными диодами, поскольку, если силовые диоды протекают, дополнительный обратный ток почти наверняка выделит достаточно тепла, чтобы быстро разрушить диод. В диодах с малым сигналом эта неисправность может быть надежно измерена только при удалении диода из цепи, потому что параллельные сопротивления любых других компонентов, подключенных к диоду, будут иметь тенденцию создавать меньшее, чем ожидалось, обратное сопротивление.

Проверка стабилитронов

Все стабилитроны имеют определенное напряжение, и если напряжение, измеренное на них в рабочих условиях, выше, чем указанное в инструкции по схеме (или на диоде, если вы видите маркировку), то диод неисправен, (вероятно разомкнутая цепь) и подлежит замене. Стабилитроны демонстрируют такие же неисправности короткого замыкания и обрыва цепи, что и другие диоды, но, кроме того, могут стать «шумными». Обычно очень стабильное напряжение на них страдает от очень быстрых колебаний, подобных постоянному шипению «фонового шума» при плохом звуковом сигнале.Поскольку диоды Зенера часто используются для стабилизации линий электропитания, эти быстрые колебания напряжения могут привести к странным неисправностям, в зависимости от того, что подается рассматриваемым источником питания. Мораль такова: если цепь ведет себя странно и есть подозрение на шум в источнике питания, проверьте любой стабилитрон, стабилизирующий эту линию, заменив его заведомо исправным диодом.

Проверка светодиодов

Тестирование светодиодов

описано в модуле «Диоды» 2.5

.

К началу страницы

Полярность — узнать.sparkfun.com

Избранное Любимый 47

Полярность диодов и светодиодов

Примечание: Мы будем иметь в виду протекание тока относительно положительных зарядов (т. е. обычный ток) в цепи. Диоды

позволяют току течь только в одном направлении, и они всегда имеют полярность . Диод имеет две клеммы. Положительная сторона называется анодом , а отрицательная — катодом .

Символ диодной цепи с маркировкой анода и катода.

Ток через диод может течь только от анода к катоду, что объясняет, почему важно, чтобы диод был подключен в правильном направлении. Физически каждый диод должен иметь какую-то индикацию для контакта анода или катода. Обычно диод имеет линию рядом с выводом катода , которая соответствует вертикальной линии на символе схемы диода.

Ниже приведены несколько примеров диодов. Верхний диод, выпрямительный 1N4001, возле катода имеет серое кольцо. Ниже этого сигнального диода 1N4148 используется черное кольцо для маркировки катода. Внизу находится пара диодов для поверхностного монтажа, каждый из которых использует линию, чтобы отметить, какой контакт является катодом.

Обратите внимание на линии на каждом устройстве, обозначающие катодную сторону, которые совпадают с линией на символе выше.

светодиоды

LED означает светоизлучающий диод , что означает, что, как и их диодные собратья, они поляризованы.Существует несколько идентификаторов для поиска положительных и отрицательных контактов светодиода. Вы можете попытаться найти более длинную ножку , которая должна указывать на положительный, анодный контакт.

Или, если кто-то подрезал ножки, попробуйте найти плоский край на внешнем корпусе светодиода. Контакт, ближайший к плоской кромке , будет отрицательным катодным контактом.

Могут быть и другие индикаторы. SMD-диоды имеют ряд идентификаторов анода/катода. Иногда проще всего просто использовать мультиметр для проверки полярности.Поверните мультиметр на настройку диода (обычно обозначается символом диода) и прикоснитесь каждым щупом к одной из клемм светодиода. Если светодиод горит, положительный щуп касается анода, а отрицательный щуп касается катода. Если он не загорается, попробуйте поменять местами щупы.

Полярность крошечного желтого светодиода для поверхностного монтажа проверяется с помощью мультиметра. Если положительный провод касается анода, а отрицательный — катода, светодиод должен загореться.


Диоды, конечно, не единственный поляризованный компонент. Есть множество деталей, которые не будут работать при неправильном подключении. Далее мы обсудим некоторые другие распространенные поляризованные компоненты, начиная с интегральных схем.


← Предыдущая страница
Что такое полярность?

Как проверить диод? Инструкция к 11 видам проверки диодов

Диод

знаком любителям электроники, поэтому важно научиться тестировать диод, чтобы узнать, исправен он или нет. Сегодня в этой статье мы собираемся представить метод тестирования 11 различных типов диодов.

 

 


Каталог

I. Проверка нормального диода

В этом видео показано, как проверить диод.


II. Испытание других 11 типов диодов

 

2.1 Испытание маломощных кварцевых диодов

 

А. Различение положительных и отрицательных электродов

(1) Обратите внимание на маркировку на корпусе. Обычно диод маркируется символом диода на корпусе диода, один конец с треугольной стрелкой — это положительный электрод, а другой конец — отрицательный электрод.

(2) Обратите внимание на цветные точки на корпусе. Корпус точечных диодов обычно маркируется точками полярного цвета (белого или красного цвета).

Обычно конец, отмеченный цветной точкой, является положительным электродом.Другие диоды помечены цветным кольцом, а конец с цветным кольцом является отрицательным электродом.

(3) На основе измерения с меньшим значением сопротивления конец, подключенный к черному щупу, является положительным электродом, а конец, подключенный к красному щупу, является отрицательным электродом.

 

Б . Определите самую высокую рабочую частоту fM. Рабочую частоту кварцевых диодов можно найти в соответствующей таблице характеристик. На практике для их различения часто используют контактные провода внутри диодов.

 

Например, диоды с точечным контактом — это высокочастотные лампы, а диоды с поверхностным контактом — это в основном низкочастотные лампы. Кроме того, вы также можете использовать блок мультиметра R×1k для проверки, как правило, прямое сопротивление меньше 1k в основном для высокочастотных ламп.

 

C.  Определить максимальное обратное напряжение пробоя VRM. Для переменного тока из-за постоянных изменений самое высокое обратное рабочее напряжение также является пиковым напряжением переменного тока, которое блокирует диод.

 

Следует отметить, что максимальное обратное рабочее напряжение не является напряжением пробоя диода. В нормальных условиях напряжение пробоя диода намного превышает максимальное обратное рабочее напряжение (примерно в два раза выше).

 

2.2 Испытание кремниевых быстродействующих диодов со стеклянной герметизацией

Метод обнаружения кремниевых быстродействующих диодов такой же, как и для обычных диодов. Разница в том, что прямое сопротивление этой трубки относительно велико.Измеренное с помощью электрического барьера R×1k, общее значение прямого сопротивления составляет 5k~10k, а значение обратного сопротивления бесконечно.

 

2.3 Проверка диодов с быстрым и сверхбыстрым восстановлением

Метод использования мультиметра для обнаружения диодов с быстрым и сверхбыстрым восстановлением в основном такой же, как и для кремниевых выпрямительных диодов в пластиковом корпусе. То есть сначала используйте блок R×1k для проверки его однонаправленной проводимости. Как правило, прямое сопротивление составляет около 4.5к, а обратное сопротивление бесконечно; затем используйте блок R×1, чтобы повторить тест. Общее прямое сопротивление составляет несколько кОм, а обратное сопротивление еще бесконечно.

 

2.4 Проверка двунаправленного пускового диода

 Во-первых, поместите мультиметр в шестерню R×1k и измерьте значения прямого и обратного сопротивления двунаправленного пускового диода, которые должны быть бесконечными. Если щупы поменять местами для измерения, стрелка мультиметра будет качаться вправо, указывая на то, что в тестируемой трубке обнаружена утечка.

 

Поместите мультиметр в соответствующий блок напряжения постоянного тока. Испытательное напряжение обеспечивается мегомметром. Во время проверки встряхните мегаомметр, и значение напряжения, показанное мультиметром, является значением VBO проверяемой трубки. Затем поменяйте местами два штырька тестируемой трубки и таким же образом измерьте значение VBR.

 

Наконец, сравните VBO и VBR. Чем меньше разница между абсолютными значениями этих двух параметров, тем лучше симметрия тестируемого двунаправленного триггерного диода.

 

2.5 Проверка диода подавления переходных напряжений (TVS)

Сначала измерьте качество трубки с помощью блока мультиметра R×1k.

 

Для однополярных ТВС по методике измерения обычных диодов можно измерить прямое и обратное сопротивление. Как правило, прямое сопротивление составляет около 4 кОм, а обратное сопротивление бесконечно.

 

Для TVS с двусторонней полярностью значение сопротивления между двумя контактами должно быть бесконечным, когда красный и черный щупы произвольно меняются местами, в противном случае это означает, что трубка плохо работает или повреждена.

 

2.6 Проверка высокочастотных варисторных диодов

A. Определение положительного и отрицательного полюсов

Отличие по внешнему виду высокочастотных варисторных диодов от обычных диодов заключается в том, что их цветовой код отличается. Цветовой код обычных диодов обычно черный, а цветовой код высокочастотных варисторных диодов — светлый. Его закон полярности подобен закону полярности обычных диодов, то есть конец с зеленым кольцом является катодом, а конец без зеленого кольца — анодом.

 

B. Измерьте прямое и обратное сопротивление, чтобы определить, хорошее оно или плохое

Конкретный метод аналогичен методу измерения прямого и обратного сопротивления обычных диодов. При измерении блоком R×1k мультиметра типа 500 прямое сопротивление обычного высокочастотного варисторного диода составляет 5k~5,5k, а обратное сопротивление бесконечно.

 

2.7 Проверка варакторного диода

Поместите мультиметр в блок R×10k, независимо от того, как красный и черный щупы переставлены местами для измерения, сопротивление между двумя контактами варакторного диода должно быть бесконечным.Если при измерении обнаруживается, что стрелка мультиметра слегка отклоняется вправо или значение сопротивления равно нулю, это свидетельствует о том, что проверяемый варикап имеет дефект утечки или пробит.

 

Потерю емкости варикапа или внутреннюю обрыв цепи невозможно обнаружить и отличить мультиметром. При необходимости метод замены может быть использован для проверки и оценки.

 

2.8 Проверка монохроматических светодиодов

Прикрепите сухую батарею 1,5 В к внешней стороне мультиметра и установите мультиметр на передачу R×10 или R×100. Такое подключение эквивалентно последовательному подключению к мультиметру напряжения 1,5В для увеличения напряжения обнаружения до 3В (напряжение включения светодиода 2В).

 

При тестировании используйте два тестовых стержня мультиметра, чтобы чередовать два контакта, контактирующих со светодиодом. Если характеристики трубки хорошие, она должна иметь возможность нормально излучать свет один раз.В это время черный щуп подключается к положительному электроду, а красный щуп подключается к отрицательному электроду.

 

2.9 Испытание инфракрасных светодиодов

A.  Различают положительный и отрицательный электроды инфракрасных светодиодов. Инфракрасные светодиоды имеют два контакта, обычно длинный контакт является анодом, а короткий — катодом. Поскольку инфракрасный светодиод прозрачен, хорошо видны электроды в оболочке, более широкий и большой внутренний электрод является отрицательным электродом, а более узкий и меньший — положительным электродом.

 

B. Поместите мультиметр в блок R×1k и измерьте прямое и обратное сопротивление инфракрасного светодиода. Как правило, прямое сопротивление должно быть около 30 кОм, а обратное сопротивление должно быть выше 500 кОм, чтобы трубку можно было использовать нормально. Чем больше обратное сопротивление, тем лучше.

 

2.10 Проверка приемного инфракрасного диода

 

A. Определение полярности контактов

 

(1) Узнать по внешнему виду.Внешний вид обычных приемных инфракрасных диодов черный. При идентификации штифтов смотрите в сторону светоприемного окна слева направо, они положительные и отрицательные соответственно. Кроме того, в верхней части корпуса трубки приемного инфракрасного диода имеется небольшая наклонная плоскость. Обычно штифт со скошенной плоскостью на одном конце является отрицательным электродом, а другой конец — положительным электродом.

 

(2) Поместите мультиметр в блок R×1k, чтобы проверить метод оценки положительного и отрицательного электродов обычных диодов, то есть поменяйте местами красный и черный измерительные провода, чтобы измерить сопротивление между двумя штырями трубки.Когда это нормально, полученное значение сопротивления должно быть одним большим и одним маленьким. На основании того, что имеет меньшее значение сопротивления, контакт, подключенный к красному тестовому проводу, является отрицательным полюсом, а контакт, подключенный к черному тестовому стержню, является положительным полюсом.

 

B.  Хорошая или плохая эффективность обнаружения. С помощью мультиметра электрически заблокируйте и измерьте прямое и обратное сопротивление приемного инфракрасного диода. По величине прямого и обратного сопротивления можно предварительно судить о качестве приемного инфракрасного диода.

 

2.11 Проверка лазерного диода

Поместите мультиметр в блок R×1k и определите порядок контактов лазерного диода в соответствии с методом определения прямого и обратного сопротивления обычных диодов.

 

Но обратите внимание на обнаружение, т.к. прямое падение напряжения лазерного диода больше, чем у обычного диода, поэтому при обнаружении прямого сопротивления стрелка мультиметра лишь немного отклоняется вправо, а обратное сопротивление бесконечно.

 


Часто задаваемые вопросы

 

1. Что такое диод и его символ?

Диод, электрический компонент, пропускающий ток только в одном направлении. На принципиальных схемах диод представляется треугольником с линией, пересекающей одну вершину.

 

2. Что особенного в диоде?

Некоторые соединения полупроводников, состоящие из особых химических комбинаций, излучают лучистую энергию в пределах спектра видимого света, когда электроны меняют энергетические уровни.Проще говоря, эти соединения светятся при прямом смещении. Диод, специально предназначенный для того, чтобы светиться как лампа, называется светоизлучающим диодом или светодиодом.

 

3. Диоды переменного или постоянного тока?

Позволяет току легко течь в одном направлении, но сильно ограничивает ток в противоположном направлении. Диоды также известны как выпрямители, потому что они преобразуют переменный ток (ac) в пульсирующий постоянный ток (dc). Диоды оцениваются в зависимости от их типа, напряжения и допустимого тока.

 

4. Почему мы используем стабилитрон?

Стабилитроны используются для регулирования напряжения, в качестве опорных элементов, ограничителей перенапряжения, а также в коммутационных устройствах и схемах ограничения. Напряжение нагрузки равно напряжению пробоя VZ диода. Последовательный резистор ограничивает ток через диод и сбрасывает избыточное напряжение, когда диод проводит ток.

 

5. Что такое диод?

Диод не является измеряемой величиной.Следовательно, у него нет единицы измерения. Как правило, для диода мы измеряем такие характеристики, как прямое падение напряжения, обратное падение напряжения и обратное напряжение пробоя, которые обычно измеряются в вольтах.

 

6. Имеют ли диоды сопротивление?

Так же, как резистор или любая другая нагрузка в цепи, диод обеспечивает сопротивление в цепи. Однако, в отличие от резисторов, диоды не являются линейными устройствами. Это означает, что сопротивление диодов не изменяется прямо и пропорционально величине приложенного к ним напряжения и тока.

 

7. Уменьшает ли диод ток?

В идеале диоды блокируют любой и весь ток, протекающий в обратном направлении, или просто действуют как короткое замыкание, если ток течет в прямом направлении. К сожалению, реальное поведение диода не совсем идеально. Диоды потребляют некоторое количество энергии при прохождении прямого тока, и они не блокируют весь обратный ток.

 

8. Как классифицируются диоды?

Диоды классифицируются в зависимости от их характеристик и предлагаются в нескольких различных типах, включая выпрямители, переключающие диоды, диоды с барьером Шоттки, стабилитроны (постоянного напряжения) и диоды, предназначенные для высокочастотных приложений.

 

9. Какой диод наиболее распространен?

Наиболее часто используется сигнальный диод 1N4148. У этого диода есть близкий брат под названием 1N914, который можно использовать вместо него, если вы не можете найти 1N4148. Этот диод имеет прямое падение напряжения 0,7 и пиковое обратное напряжение 100 В и может выдерживать максимальный ток 200 мА.

 

10. В чем разница между стабилитроном и диодом Шоттки?

Поскольку их скорость переключения очень высока, диоды Шоттки очень быстро восстанавливаются при обратном токе, что приводит к очень небольшому выбросу обратного тока…. Диод особого типа, называемый стабилитроном, блокирует ток через него до определенного напряжения при обратном смещении.

 

11. В чем разница между диодом Шоттки и обычным диодом?

В обычном диоде PN-перехода выпрямительного класса переход формируется между полупроводником P-типа и полупроводником N-типа. В то время как в диоде Шоттки соединение находится между полупроводником N-типа и металлической пластиной. Диод с барьером Шоттки имеет электроны в качестве основных носителей с обеих сторон перехода.

 

12. Почему он называется диодом?

Диод называется диодом, поскольку он имеет два отдельных электрода (т. е. клеммы), называемых анодом и катодом. Диод электрически асимметричен, потому что ток может свободно течь от анода к катоду, но не в другом направлении. Таким образом, он действует как односторонний клапан для тока.

 

13. Диод — это то же самое, что и резистор?

Ключевое отличие: диод — это тип электрического устройства, позволяющего току проходить через него только в одном направлении…. Резистор — это электрический компонент, который используется для обеспечения сопротивления току в цепи. В основном они используются для производства тепла или света.

 

14. Какое напряжение может выдержать диод?

Кремниевые диоды имеют прямое напряжение примерно 0,7 В. Германиевые диоды имеют прямое напряжение примерно 0,3 вольта. Максимальное обратное напряжение смещения, которое диод может выдержать без «проблемы», называется пиковым обратным напряжением или рейтингом PIV.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта