Электродвигатель синхронный принцип работы: Синхронный двигатель с постоянными магнитами
Синхронный электродвигатель с обмоткой возбуждения
Дмитрий Левкин
Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.
Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)
Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.
Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора
Статор: вращающееся магнитное поле
На обмотки катушек статора подается трехфазное переменное напряжение.
В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».
Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями
Ротор: постоянное магнитное поле
Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил.
Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.
Магнитные поля ротора и статора сцепленные друг с другом
Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:
,
где Ns – частота вращения магнитного поля, об/мин,
f – частота тока статора, Гц,
p – количество пар полюсов.
Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.
Почему синхронные электродвигатели не запускаются от электрической сети?
Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.
Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети
Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.
Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.
Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.
Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.
Синхронные электродвигатели. Работа и применение. Особенности
Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.
Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.
Конструктивные особенности и принцип работы
Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.
Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.
Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.
Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.
Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.
Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.
Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.
При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.
В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.
Достоинства и недостатки
Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.
Синхронные электродвигатели имеют и другие достоинства:
Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.
Недостатками являются следующие отрицательные моменты:
При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
Запуск двигателя происходит по сложной схеме.
Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.
В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.
Выбор двигателя
К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:
Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы
Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.
Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.
Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.
Сфера применения
Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.
Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.
В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.
Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.
Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.
Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.
Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.
Похожие темы:
Принцип работы и строение синхронного электродвигателя
Каков
принцип работы синхронного двигателя? Что вам необходимо знать о нем?
Как правильно использовать, чтобы ремонт электродвигателя понадобился
как можно позже? Эту статью мы составили специально для наших клиентов
(как существующих, так и будущих).
Каково строение синхронного двигателя? Какие основные свойства вам необходимо знать и иметь в виду?
Оборудование не является самозапускающимся механизмом. Это значит,
что для его работы требуется внешнее вмешательство/воздействие. В
противном случае система не сможет начать работу на определенной
синхронной скорости.
Системы могут применяться для увеличения фактора силы. Благодаря
уникальному строению и функциональным решениям синхронный двигатель
может работать в условиях любых коэффициентов мощности.
Двигатель имеет синхронный с частотой электрической сети принцип
работы. Это значит, что на вашем объекте обязательно нужно подумать о
наличии бесперебойного источника питания, который позволил бы двигателю
работать с постоянной заданной скоростью.
Ключевые характеристики синхронных двигателей
Электромеханическое устройство, способное преобразовать электрическую
энергию в механическую — ключевая характеристика. Строение синхронного
двигателя мало чем отличается от того же 3-фазного асинхронного
двигателя. Основным исключением является разве что принцип подачи
постоянного тока (он идет на ротор).
В зависимости от типа подключения можно выделить оборудование 2-х видов:
Однофазное
Трехфазное.
Все трехфазные решения дополнительно разделяются на несколько
подтипов. К примеру, на рынке представлены синхронные или асинхронные
(также можно встретить и другое название – индукционные) решения.
Принцип работы синхронного двигателя
Чтобы вам проще было понять основные направления, мы представим
информацию в кратком и схематичном виде. Если у вас появляются вопросы,
то смело можете связаться с нашим специалистом. Опытный мастер расскажет
о принципе действия, даст ответы на ваши вопросы, разъяснит те моменты,
которые показались вам сложными и непонятными.
Мы работаем для того, чтобы вам было удобно!
Требуется создание электронно-магнитного поля.
Для этого в оборудовании используется 2 электрических ввода (обмотка и ротор).
Обмотка статора включает 3 фазы, которые отвечают за процесс вращения магнитного потока.
На ротор подается постоянный ток, здесь же и производится постоянный поток.
ВАЖНО ЗНАТЬ! Механика проста и понятна: если частота
составляет 50 Гц, то в таком случае трехфазному потоку необходимо будет
вращаться 3 тысячи оборотов на 60 секунд. Путем простых вычислений
становится понятно, что для работы системы нужно 50 оборотов за 1
секунду. Принцип работы
синхронного двигателя
предусматривает возникновение явления так называемой инерции силы.
Чтобы преодолеть ее, требуется сильное механическое воздействие.
Запускаем синхронный двигатель в работу
Оборудование не является самозапускающимся механизмом, о чем мы уже и
указывали выше. Для удобства клиентов и заказчиков могут
предусматриваться разные способы запуска:
С помощью вспомогательного двигателя. В таком случае требуется
надежное и прочное соединение; как только магнитное поле замыкается, то
связь с «запускающим» двигателем прекращается.
Через асинхронный пуск. Принцип работы синхронного двигателя
предусматривает использование дополнительной короткозамкнутой обмотки.
Надеемся, вам стало более понятно и ясно, в каком направлении работать дальше, каких требований и критериев придерживаться.
Принцип действия синхронного двигателя
Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.
Устройство синхронного двигателя
Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.
Конструкция синхронного двигателя состоит из двух основных частей – статора и ротора. Статор является неподвижной частью агрегата, а ротор – подвижной. В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название – поле реакции якоря. В генераторе такое поле создается с помощью индуктора.
В состав индуктора входят электромагниты постоянного тока, называемые полюсами. Во всех синхронных электродвигателях индукторы бывают двух конструкций – явнополюсная и не явнополюсная, отличающиеся расположением полюсов. Конструкция статора включает в себя корпус и сердечник, в состав которого входят двух- и трехфазные обмотки. Сами обмотки могут быть распределенными и сосредоточенными.
Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.
Каждый синхронный электродвигатель обладает важным параметром – электромагнитным моментом. Он возникает в том случае, когда магнитный поток ротора начинает взаимодействовать с вращающимся магнитным полем. Данное поле образуется под влиянием трехфазного тока, протекающего по обмотке якоря.
В режиме холостого хода происходит совпадение осей магнитных полей ротора и статора. Поэтому электромагнитные силы, возникающие между их полюсами, принимают радиальное направление и значение электромагнитного момента агрегата становится равным нулю. При переходе устройства в двигательный режим, на ротор начинает воздействовать внешние нагрузочный момент, приложенный к валу. В результате, происходит смещение ротора на величину определенного угла против направления вращения.
Подобное электромагнитное взаимодействие между ротором и статором приводит к созданию электромагнитных сил, направленных в сторону вращения. Таким образом, действие вращающегося электромагнитного момента стремится к преодолению действия внешнего момента. Максимальное значение электромагнитного момента образует угол 90 градусов, при расположении полюсов ротора между осями полюсов статора.
Если значение нагрузочного момента, приложенного к валу двигателя, превысит максимальный электромагнитный момент, в этом случае двигатель остановится под влиянием внешнего момента. Из-за этого в неподвижном двигателе по обмотке якоря будет проходить очень высокий ток. Данный режим является аварийным, он представляет собой выпадение из синхронизма и на практике не должен допускаться.
Как работает синхронный двигатель
Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.
При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.
При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.
Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.
Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.
Схема запуска двигателя и его регулировка
У синхронных двигателей отсутствует начальный пусковой момент. При подключении якорной обмотки к источнику переменного тока, электромагнитный момент дважды изменить свое направление за один период изменения тока. Это происходит, когда ротор находится в неподвижном состоянии, а в обмотке возбуждения протекает постоянный ток.
Таким образом, величина среднего момента в течение одного периода будет иметь нулевое значение. Чтобы увидеть, как работает синхронный двигатель при пуске, нужно выполнить разгон его ротора под действием внешнего момента до вращения с частотой, приближенной к синхронной.
Сам запуск агрегата может производиться разными способами:
В первом случае используется схема асинхронного включения, основой которой служит глухо подключенный возбудитель. Данный способ применяется при статическом моменте нагрузки ниже 0,4, когда отсутствует падение напряжения. Сопротивление разряда замыкается в обмотке возбуждения, за счет чего исключаются перебои с возбуждением обмотки во время впуска, поскольку незначительная скорость вращения ротора приводит к перенапряжению. Когда скорость становится близкой к синхронной, контактор реагирует на это изменение, в результате происходит переключение обмотки возбуждения из разрядного сопротивления непосредственно на якорь возбудителя.
Во втором варианте пуска используется тиристорный возбудитель. Этот способ считается более надежным из-за высокого КПД. Управление возбуждением значительно облегчается. Подача возбуждение осуществляется автоматически с помощью электромагнитного реле.
Различия синхронных и асинхронных двигателей
Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.
В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.
Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.
Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.
Мы узнали о различных типах электродвигателей в нашей предыдущей статье. Теперь мы начнем узнавать об этих моторах индивидуально. В этой статье мы рассмотрим теорию работы синхронного двигателя и его строение, а так же подскажем где вы можете купить.
Принцип синхронного двигателя
Основной принцип такой же, как и для всех двигателей. Это взаимная индукция между обмоткой статора и ротора, которая делает любой двигатель работоспособным.Кроме того, когда 3-фазная обмотка питается от 3-фазного источника питания, то создается магнитный поток постоянной величины, но вращающийся с синхронной скоростью.
Чтобы легко понять работу синхронного двигателя, давайте рассмотрим только два полюса в статоре и роторе. Как показано на рисунке, статор имеет два полюса Ns и S. Эти полюса, находясь под напряжением, создают вращающееся магнитное поле. Они вращаются с синхронной скоростью и позволяют считать направление вращения по часовой стрелке. Если полюса ротора находятся в положении, показанном на рисунке, то полюса отталкиваются друг от друга. Итак, северный полюс в статоре отталкивает северный полюс ротора. Также южный полюс статора отталкивает юг ротора. Это заставляет ротор вращаться в направлении против часовой стрелки. Таким образом, через полпериода полюса статора меняются местами, что приводит их в положение противоположенных полюсов, которые притягивают друг друга . Т.е. южный полюс статора и северный полюс ротора притягиваются и магнитно сцепляются.
В этом положении полюсы Ns притягивают S, а полюсы Ss притягивают N. Эти противоположные полюса ротора и статора начинают вращаться в том же направлении, что и полюса статора. Это заставляет ротор вращаться в одном направлении и с синхронной скоростью, которая равна скорости вращения полюсов статора. Таким образом, поскольку положение полюсов статора продолжает изменяться с быстрой скоростью и реверсированием, полюса ротора также вращаются и поворачиваются так же, как и статор, таким образом вызывая вращение ротора с постоянной, синхронной скоростью и в том же направлении. Приобрести синхронный двигатель можно, перейдя по ссылке ниже:
Теория работы
Когда на двигатель подается питание переменного тока, полюса статора находятся под напряжением. Это, в свою очередь, притягивает полюса ротора, таким образом, полюса статора и ротора магнитно блокируются. Именно эта блокировка заставляет ротор вращаться с одинаковой синхронной скоростью с полюсами статора. Синхронная скорость вращения задается выражением Ns = 120f / P.
Когда нагрузка на двигатель постепенно увеличивается, ротор, несмотря на то, что он вращается с одинаковой скоростью, имеет тенденцию постепенно снижаться по фазе на некоторый угол, «β», называемый Угол нагрузки или Угол сцепления. Этот угол нагрузки зависит от величины нагрузки, на которую рассчитан двигатель. Другими словами, мы можем интерпретировать, как развиваемый двигателем крутящий момент зависит от угла нагрузки «β».
Электрическую работу синхронного двигателя можно сравнить с передачей мощности механическим валом. На рисунке показаны два шкива, «A» и «B». Предполагается, что шкив «A» и шкив «B» установлены на одном валу. «А» передает мощность от привода через вал, в свою очередь заставляя «В» вращаться, передавая мощность нагрузке.
Два шкива, которые прикреплены к одному валу, можно сравнить с блокировкой между полюсами статора и ротора.
Если нагрузка увеличивается, шкив «B» передает увеличение нагрузки на вал, что проявляется в скручивании вала.
Таким образом, поворот вала можно сравнить с ротором, падающим по фазе со статором.
Угол кручения можно сравнить с углом нагрузки «β». Также, когда нагрузка увеличивается, сила скручивания и угол закручивания увеличиваются. Таким образом, угол нагрузки «β» также увеличивается.
Если нагрузка на шкив «B» увеличивается до такой степени, что он заставляет вал крутиться и ломаться, то передача мощности через вал прекращается, когда вал ломается. Это можно сравнить с ротором, выходящим из синхронизма с полюсами статора.
Таким образом, синхронные двигатели могут работать либо с синхронной скоростью, либо они останавливаются.
Процедура запуска двигателя
Все синхронные двигатели оснащены «обмоткой короткозамкнутого ротора», состоящей из медных прутков, закороченных на обоих концах. Эти обмотки также служат для самостоятельного запуска синхронного двигателя. Во время запуска он легко запускается и действует как асинхронный двигатель. Для запуска синхронного двигателя сетевое напряжение подается на клеммы статора, а ротор остается не возбужденным. Он запускается как асинхронный двигатель, и когда он достигает скорости около 95% от своей синхронной скорости, на ротор подается слабое постоянное возбуждение. В результате чего ротор выравнивается синхронно со статором. В этот момент статор и полюса ротора сцепляются друг с другом и приводят двигатель в синхронность.
Фазовые колебания
Раскачка фазы синхронного двигателя вызваны:
Различными нагрузками
Пульсирующими частотами питания.
Когда синхронный двигатель нагружен (например, компрессоры, насосы и т.д.). Когда нагрузка увеличивается, его ротор возвращается назад на угол соединения «β». При дальнейшем увеличении нагрузки этот угол «β» дополнительно увеличивается, чтобы справиться с возросшей нагрузкой. В этой ситуации, если нагрузка внезапно уменьшается, ротор перегружается, а затем оттягивается, чтобы приспособить новую нагрузку к двигателю. Таким образом, ротор начинает колебаться, как маятник, в своем новом положении, соответствующем его новой нагрузке, пытаясь восстановить равновесие. Если период времени этих колебаний совпадает с собственной частотой станка, то устанавливается резонанс, что может вывести машину из синхронизма. Для демпфирования таких колебаний используются «демпфирующие решетки», известные как «обмотки короткозамкнутых клеток».
Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.
Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.
Конструктивные особенности и принцип работы
Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.
Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.
Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.
Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.
Синхронные электродвигатели имеют в своей основе принцип взаимодействия полюсов индуктора и статора. Во время пуска двигатель ускоряется до скорости вращения магнитного потока. Только при таком условии электродвигатель начинает действовать в синхронном режиме. При таком процессе магнитные поля образуют пересечение, возникает вход в синхронизацию.
Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.
Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.
При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.
В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.
Достоинства и недостатки
Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.
Синхронные электродвигатели имеют и другие достоинства:
Электродвигатели синхронного типа работают с повышенным коэффициентом мощности, что создает уменьшение расхода энергии и снижает потери. КПД синхронного мотора выше при той же мощности асинхронного двигателя.
Синхронные электродвигатели имеют момент вращения, который прямо зависит от напряжения сети. Поэтому он при уменьшении напряжения сохраняет свою мощность больше асинхронного. Это является фактором надежности подобных конструкций моторов.
Недостатками являются следующие отрицательные моменты:
При проведении сравнительного анализа конструкций двух моторов, можно отметить, что синхронные электродвигатели выполнены по более сложной схеме, поэтому их стоимость будет выше.
Следующим недостатком для синхронных моторов стала необходимость в источнике тока в виде выпрямителя, либо другого блока питания постоянного тока.
Запуск двигателя происходит по сложной схеме.
Регулировка скорости вала двигателя возможна только одним способом, с помощью применения частотного преобразователя.
В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.
Выбор двигателя
К вопросу приобретения синхронного электродвигателя нужно подходить, основываясь на следующие факторы:
Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также синхронные электродвигатели отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.
Особенности выполнения подключения электродвигателя с потребителем.
Синхронные компенсаторы
Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.
Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.
Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.
Сфера применения
Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.
Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.
В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.
Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.
Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.
Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.
Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.
Синхронные электродвигатели (СД) не так распространены, как асинхронные с короткозамкнутым ротором. Но используются там, где нужен большой крутящий момент и в процессе работы будут происходить частые перегрузки. Также такой тип двигателей используются там, где нужна большая мощность, чтобы приводить в движение механизмы, благодаря высокому коэффициенту мощности и возможности улучшать коэффициент мощности сети, что существенно снизит затраты на электроэнергию и нагрузку на линии. Что такое синхронный двигатель, где он используется и какие у него плюсы минусы мы рассмотрим в этой статье.
Определение и принцип действия
Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.
Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.
Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.
Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).
Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:
f – частота тока в обмотке, Гц, p – количество пар полюсов.
Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.
Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.
Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.
Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.
Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.
Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).
Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).
Ниже вы видите условное обозначение на схеме синхронной машины.
Конструкция ротора
Как и любой другой, синхронный электродвигатель состоит из двух основных частей:
Статор. В нём расположены обмотки. Его еще называют якорем.
Ротор. На нём устанавливают постоянные магниты или обмотку возбуждения. Его также называют индуктором, из-за его предназначения — создавать магнитное поле).
Для подачи тока в обмотку возбуждения на роторе устанавливают 2 кольца (так как возбуждение постоянным током, на одно из них подают «+», а на другое «—»). Щетки закреплены на щеткодержателе.
Роторы у синхронных электродвигателей переменного тока бывают двух типов, в зависимости от назначения:
Явнополюсные. Четко видны полюса (катушки). Используют при малых скоростях и большом числе полюсов.
Неявнополюсные – выглядит как круглая болванка, в прорези на которой уложены провода обмоток. Используют при больших скоростях вращения (3000, 1500 об/мин) и малом числе полюсов.
Пуск синхронного двигателя
Особенностью этого вида электрических машин является то, что его нельзя просто подключить к сети и ожидать его запуска. Кроме того, что для работы СД нужен не только источник тока возбуждения, у него и достаточно сложная схема пуска.
Запуск происходит как у асинхронного двигателя, а для создания пускового момента кроме обмотки возбуждения на роторе размещают и дополнительную короткозамкнутую обмотку «беличью клетку». Её еще называют «демпфирующей» обмоткой, потому что она повышает устойчивость при резких перегрузках.
Ток возбуждения в обмотке ротора при пуске отсутствует, а когда он разгоняется до подсинхронной скорости (на 3-5% меньше синхронной), подаётся ток возбуждения, после чего он и ток статора совершает колебания, двигатель входит в синхронизм и выходит на рабочий режим.
Для ограничения пусковых токов мощных машин иногда уменьшают напряжение на зажимах обмоток статора, подключив последовательно автотрансформатор или резисторы.
Пока синхронная машина запускается в асинхронном режиме к обмотке возбуждения подключаются резисторы, сопротивление которых превышает сопротивление самой обмотки в 5 — 10 раз. Это нужно чтобы пульсирующий магнитный поток, возникающий под действием токов, наводимых в обмотке при пуске, не замедлял разгон, а также чтобы не повредить обмотки из-за индуцируемыми в ней ЭДС.
Видов таких машин очень много, выше была описана конструкция синхронного электродвигателя переменного тока с обмотками возбуждения, как самого распространенного на производстве. Есть и другие типы, такие как:
Синхронные двигатели с постоянными магнитами. Это различные электродвигатели, такие как PMSM – permanent magnet synchronous motor, BLDC – Brushless Direct Current и прочие. Отличия, между которыми, состоят в способе управления и форме тока (синусоидальная или трапецивиденая). Их еще называют бесколлекторными или бесщеточными двигателями. Используются в станках, радиоуправляемых моделях, электроинструменте и т. д. Они работают не напрямую от постоянного тока, а через специальный преобразователь.
Шаговые двигатели — синхронные бесщеточные двигатели, у которых ротор точно удерживает заданное положение, их используют для позиционирование рабочего инструмента в ЧПУ станках и для управления различными элементами автоматических систем (например, положение дроссельной заслонки в автомобиле). Состоят из статора, в этом случае на нём расположены обмотки возбуждения, и ротора, который выполнен из магнито-мягкого или магнито-твёрдого материала. Конструктивно очень похожи на предыдущие типы.
Реактивные.
Гистерезисные.
Реактивно-гистерезисные.
Последние три типа СД также не имеют щеток, они работают за счет особой конструкции ротора. У реактивных СД различают три их конструкции: поперечно-расслоенный ротор, ротор с явновыраженными полюсами и аксиально-расслоенный ротор. Объяснение принципа их работы достаточно сложно, и займет большой объём, поэтому мы опустим его. Такие электродвигатели на практике вы, скорее всего, встретите нечасто. В основном это маломощные машины, используемые в автоматике.
Сфера применения
Синхронные двигатели стоят дороже чем асинхронные, к тому же требуют дополнительного источника постоянного тока возбуждения – это отчасти снижает ширину области применения этого вида электрических машин. Однако, синхронные электродвигатели используют для привода механизмов, где возможны перегрузки и требуется точное поддерживание стабильных оборотов.
При этом чаще всего используются в области больших мощностей — сотен киловатт и единиц мегаватт, и, при этом, пуск и остановка происходят достаточно редко, то есть машины работают круглосуточно долгое время. Такое применение обусловлено тем, что синхронные машины работают с cosФи приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.
Преимущества и недостатки
Если говорить простыми словами, то у любой электрической машины есть свои плюсы и минусы. У синхронного двигателя положительными сторонами является:
Работа с cosФи=1, благодаря возбуждению постоянным током, соответственно они не потребляют реактивной мощности из сети.
При работе, с перевозбуждением отдают реактивную мощность в сеть, улучшая коэффициент мощности сети, падение напряжения и потери в ней и повышается КМ генераторов электростанциях.
Максимальный момент, развиваемый на валу СД, пропорционален U, а у АД — U² (квадратичная зависимость от напряжения). Это значит, что у СД хорошая нагрузочная способность и устойчивость работы, которые сохраняются при просадке напряжения в сети.
В следствие всего этого скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности, особенно при повышении тока возбуждения.
Однако существенным недостатком синхронного двигателя является то, что его конструкция сложнее, чем у асинхронных с КЗ-ротором, нужен возбудитель, без которого он не сможет работать. Всё это приводит к большей стоимости по сравнению с асинхронными машинами и сложностями в обслуживании и эксплуатации.
Пожалуй, на этом достоинства и недостатки синхронных электродвигателей заканчиваются. В этой статье мы постарались кратко изложить общие сведения о синхронных электродвигателях. Если у вас есть чем дополнить материал – пишите в комментариях.
Синхронные электродвигатели
Заводы производители синхронных электродвигателей: Элсиб, WEG, VEM, Силовые машины — завод Реостат, ELSIB, Русэлпром
Синхронный электродвигатель (СД) – это устройство, работающее в сети переменного тока. У синхронной машины частота вращения ротора соответствует частоте вращения магнитного поля. При выборе электродвигателя необходимо проконсультироваться с заводом производителем.
СД используются, где пуск и остановка происходят достаточно редко (конвейеры и т.д.), то есть двигатели работают круглосуточно достаточно долгое время. Работа в таких условиях объясняется тем, что синхронные двигатели работают с cos φ приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.
Синхронные электродвигатели нашли широкое применение в металлургической и металлообрабатывающей промышленности, на объектах нефтедобычи, на насосных станциях городских водоканалов, в целлюлознобумажной промышленности и других отраслях.
Применение синхронных двигателей для привода:
мощных вентиляторов
мельниц
конвейеров
эксгаустеров
компрессоров
дробилок
Цена на синхронные электродвигатели зависит от типа двигателя, а также от:
Параметров мощности
Габарита двигателя(высоты оси вращения)
Конструктивных особенностей
Преимущества синхронных электродвигателей:
возможность регулирования реактивного тока
скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности
устойчивость к колебаниям сетевого напряжения, а также хорошая нагрузочная способность
Устройство синхронного двигателя
Принцип действия СД основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.
Синхронный электродвигатель состоит из двух основных частей:
Статора (якорь) – в этой части двигателя расположены обмотки
Ротора (индуктор) – в этой части СД устанавливают обмотку возбуждения или постоянные магниты.
Чем отличается синхронный электродвигатель от асинхронного? Главное отличие в роторе двигателя — синхронный двигатель имеет в наличии обмотки на якоре, а асинхронный не имеет.
Типы синхронных электродвигателей
§89. Синхронный двигатель, принцип действия и устройство синхронного двигателя
Синхронный двигатель. Принцип действия и устройство. Синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I (рис. 291, а) подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n1, с которой вращается магнитное поле (до синхронной частоты вращения). Объяс-
Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя
няется это тем, что ток в обмотку ротора подается от постороннего источника, а не индуцируется в нем магнитным полем статора и, следовательно, не зависит от частоты вращения вала двигателя. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки.
Электромагнитный момент. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента Мвн. Максимум момента Мmax соответствует углу ? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.
Если нагрузочный момент Мвн, приложенный к валу электродвигателя, станет больше Мmax, то двигатель под действием внешнего момента Мвн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток. Этот режим называется выпаданием из синхронизма, он является аварийным и не должен допускаться.
При работе машины в генераторном режиме (рис. 292, д и е) ротор под действием приложенного к валу внешнего момента Мвн смещается на угол ? по направлению вращения. При этом создаются электромагнитные силы, направленные против вращения, т. е. образуется тормозной электромагнитный момент М. Таким образом, при изменении значения и направления внешнего момента на валу ротора Мвн изменяется лишь угол ? между осями полей статора и ротора, в то время как в асинхронной машине в этом случае изменяется частота вращения ротора.
Пуск в ход и регулирование частоты вращения. Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска. Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка
Рис. 292. Электромагнитный момент в синхронной машине, образующийся в различных режимах
Устройство синхронного генератора переменного тока, принцип работы
Электричество – вид энергии, который можно передавать на дальние расстояния, преобразовывать в механическую, тепловую энергию и трансформировать в световое излучение. Электроэнергию получают различными способами – химическим, тепловым, механическим, фотоэлектрическим.
Наиболее распространенный способ получения электроэнергии – механический, с использованием генераторов. Именно таким образом получают практически всю электрическую энергию, используемую в бытовых и производственных целях.
Генераторы, иначе называемые «электростанциями», бывают синхронными и асинхронными, одно- и трехфазными. Рассмотрим подробнее устройство и работу трехфазного электрогенератора, который может работать параллельно с другими электрогенераторами или централизованной электрической сетью.
В конструкцию синхронных электрических генераторов входят три основные детали:
Ротор. Вращающийся элемент. Это биполярный электромагнит постоянного тока. Обмотка ротора соединяется с блоком управления через два щеточных узла.
Статор. Неподвижный элемент. Витки статорной обмотки равномерно расположены по окружности. В однофазных машинах присутствует одна обмотка, в трехфазных – три, которые соединяются по схемам «звезда», «треугольник» или со сдвигом друг относительно друга на 120°.
Блок управления.
Статор и ротор изготавливают из пластин электротехнических марок стали, которые хорошо проводят магнитный поток и плохо проводят электрические вихревые токи. Синхронные генераторы, имеющие явно полюсный ротор, используются для тихоходных машин, у которых скорость вращения не превышает 1000 оборотов в минуту, например установок с гидравлическими турбинами. Синхронные электрогенераторы с не явно полюсными роторами используются для механизмов, вращающихся с высокой скоростью – 1500-3000 об/минуту. Бывают двух- и четырехполюсными.
Принцип работы синхронного электрогенератора
Основные этапы:
При вращении ротора двигателем внутреннего сгорания начинается вращение поля электромагнита.
В результате вращения магнитного поля в статорной обмотке появляется переменное синусоидальное напряжение – одно- или трехфазное. Значение напряжения генерируемого тока зависит от скорости вращения ротора.
Изменение электрической нагрузки синхронного генератора меняет механическую нагрузку на валу двигателя внутреннего сгорания. В свою очередь, это изменяет скорость вращения ротора, а значит, изменения величины напряжения и частоты. Избежать таких изменений параметров генерируемого электротока позволяет блок управления, который автоматически регулирует электрические характеристики через обратную связь.
Трехфазный синхронный генератор может работать в режиме генератора или в режиме двигателя. В первом случае в СГ входящей является механическая энергия, а выходящей – электрическая. Во втором случае – входящей является электрическая энергия, а выходящей – механическая.
Разновидности синхронных генераторов
Конкретная область применения определяет, какой вид синхронного генератора купить.
Производители предлагают электрогенераторы:
Шаговые (импульсные). Применяются для приводов, работающих в режиме старт-стоп, или для устройств постоянного режима работы с импульсным сигналом управления.
Безредукторы. Используются в автономных системах.
Бесконтактные. Востребованы в качестве электростанций на речных и морских судах.
Гистерезисные. Предназначены для установки в счетчиках времени, инерционных электрических приводах, системах автоматизированного руководства.
Индукторные. Используются для оснащения электрических установок.
Области применения синхронных трехфазных генераторов переменного тока
Важная особенность синхронного генератора – возможность синхронизации с другими подобными электрическими машинами. Это свойство позволяет использовать эти машины в промышленной энергетике и при повышении нагрузок в час пик подключать резервные агрегаты.
Трехфазные генераторы применяют на:
тепловозах с выпрямлением переменного тока полупроводниковыми элементами и других транспортных системах;
гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей.
Синхронные трехфазные генераторы могут использоваться в качестве электромоторов с мощностью более 50 кВт. В этом режиме ротор соединяют с источником постоянного тока, а статор подключают к трехфазному кабелю.
В каких случаях необходимо купить и использовать синхронный генератор?
Синхронный генератор переменного тока выбирают в следующих случаях:
Если предъявляются высокие требования к постоянству параметров напряжения и частоты тока.
При высокой вероятности перегрузок в переходном режиме потребителей с реактивной мощностью.
При вероятности перегрузок в рабочем режиме, когда к генератору подключаются потребители как с активной, так и с реактивной мощностью.
Преимущества использования синхронных генераторов
Плюсы трехфазных синхронных генераторов:
Способность выдерживать перегрузы в электросети, превышающие в три раза номинальное значение, и короткие замыкания.
Более высокое качество генерируемой электроэнергии, по сравнению с асинхронными генераторами. Поэтому эти электрические машины используются для работы в комплексе с дорогостоящим оборудованием.
Наличие автоматических регуляторов напряжения, регулирующих выпрямителей, которые защищают оборудование от перегруза и коротких замыканий и способны отключать электроустановки в случае возникновения аварийных ситуаций.
Современные электрические генераторы изготавливаются в соответствии с требованиями мировых стандартов качества и безопасности.
Электродвигатель | Британника
Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.
Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений в цикле.Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на чертеже ток в фазе a является максимально положительным, а в фазах b и c — половиной этого значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т.е.е., одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как ток как в фазе b, , так и в фазе a имеет положительное значение на половину. Результат, как показано на рисунке для t 2 , снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас
Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. Картина токов ротора за мгновение t 1 рисунка показана на этом рисунке. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.
Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.
Британская энциклопедия, Inc.
Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.
Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.
За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.
В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника питания 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.
Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.
Синхронные двигатели
: применение и принцип работы
Электродвигатели — это электромеханические устройства, преобразующие электрическую энергию в механическую. В зависимости от типа входа мы классифицировали его на однофазные и трехфазные двигатели.
Наиболее распространенными типами трехфазных двигателей являются синхронные двигатели , и асинхронные двигатели. Когда трехфазные электрические проводники размещаются в определенных геометрических положениях (то есть под определенным углом друг к другу), создается электрическое поле.Вращающееся магнитное поле вращается с определенной скоростью, известной как синхронная скорость .
Если в этом вращающемся магнитном поле присутствует электромагнит, то электромагнит магнитно блокируется этим вращающимся магнитным полем и вращается с той же скоростью, что и вращающееся поле.
Отсюда термин синхронный двигатель , поскольку скорость ротора двигателя такая же, как и вращающееся магнитное поле.
Это двигатель с фиксированной скоростью, потому что у него только одна скорость, а именно синхронная скорость.Эта скорость синхронизирована с частотой питания. Синхронная скорость определяется по формуле:
Где:
N = Синхронная скорость ( об / мин — т.е. оборотов в минуту )
f = Частота питания ( Гц, )
p = Количество Полюса
Конструкция синхронного двигателя
Обычно его конструкция почти аналогична конструкции трехфазного асинхронного двигателя, за исключением того факта, что здесь мы подаем постоянный ток на ротор, причину которого мы объясним позже.Теперь давайте сначала рассмотрим основную конструкцию этого типа двигателя. Из приведенного выше изображения ясно, как мы проектируем этот тип машины. Мы подаем трехфазное питание на статор и постоянный ток на ротор.
Основные характеристики синхронных двигателей
Синхронные двигатели по своей природе не самозапускаются. Им требуются некоторые внешние средства, чтобы приблизить их скорость к синхронной скорости, прежде чем они будут синхронизированы.
Скорость работы синхронизируется с частотой питания, и, следовательно, при постоянной частоте питания они ведут себя как двигатели с постоянной скоростью независимо от условий нагрузки.
Этот двигатель обладает уникальными характеристиками работы при любом коэффициенте электрической мощности.Это позволяет использовать его для улучшения коэффициента мощности.
Принцип работы Синхронный двигатель
Синхронные двигатели представляют собой машину с двойным возбуждением, т.е. на нее имеются два электрических входа. Обмотка статора состоит из трехфазного источника питания трехфазной обмотки статора и постоянного тока для обмотки ротора.
Трехфазная обмотка статора, по которой проходят трехфазные токи, создает трехфазный вращающийся магнитный поток. Ротор, на который подается постоянный ток, также создает постоянный магнитный поток. Учитывая частоту сети 50 Гц, из приведенного выше соотношения мы можем видеть, что трехфазный вращающийся поток вращается примерно на 3000 оборотов за 1 минуту или 50 оборотов за 1 секунду.
В конкретный момент времени полюса ротора и статора могут иметь одинаковую полярность (N-N или S-S), вызывая силу отталкивания на роторе, и в следующий момент это будет N-S, вызывающая силу притяжения. Но из-за инерции ротора он не может вращаться в любом направлении из-за сил притяжения или отталкивания, и ротор остается в состоянии покоя.Следовательно, синхронный двигатель не запускается автоматически.
Здесь мы используем некоторые механические средства, которые сначала вращают ротор в том же направлении, что и магнитное поле, до скорости, очень близкой к синхронной скорости. При достижении синхронной скорости происходит магнитная блокировка, и синхронный двигатель продолжает вращаться даже после удаления внешних механических средств.
Но из-за инерции ротора он не может вращаться в любом направлении из-за сил притяжения или отталкивания, и ротор остается в состоянии покоя. Следовательно, синхронный двигатель не запускается автоматически.
Здесь мы используем некоторые механические средства, которые сначала вращают ротор в том же направлении, что и магнитное поле, до скорости, очень близкой к синхронной скорости. При достижении синхронной скорости происходит магнитная блокировка, и синхронный двигатель продолжает вращаться даже после удаления внешних механических средств.
Способы пуска синхронного двигателя
Пуск двигателя с внешним первичным двигателем: Синхронные двигатели механически связаны с другим двигателем.Это может быть трехфазный асинхронный двигатель или параллельный двигатель постоянного тока. Здесь мы не применяем возбуждение постоянным током изначально. Он вращается со скоростью, очень близкой к его синхронной скорости, а затем мы даем возбуждение постоянным током. Через некоторое время, когда сработает магнитная блокировка, питание внешнего двигателя прекращается.
Демпферная обмотка В данном случае синхронный двигатель является явнополюсным, дополнительная обмотка размещена на торце полюса ротора. Первоначально, когда ротор не вращается, относительная скорость между обмоткой демпфера и потоком вращающегося воздушного зазора велика, и в нем индуцируется ЭДС, которая создает требуемый пусковой момент.По мере приближения скорости к синхронной, ЭДС и крутящий момент снижаются и, наконец, происходит магнитная блокировка; крутящий момент также снижается до нуля. Следовательно, в этом случае синхронный двигатель сначала работает как трехфазный асинхронный двигатель с дополнительной обмоткой, и, наконец, он синхронизируется с частотой.
Применение синхронных двигателей
Синхронный двигатель, на валу которого нет нагрузки, используется для повышения коэффициента мощности. Благодаря своим характеристикам вести себя при любом коэффициенте электрической мощности, он используется в энергосистемах в ситуациях, когда статические конденсаторы дороги.
Синхронный двигатель находит применение там, где рабочая скорость меньше (около 500 об / мин) и требуется большая мощность. При потребляемой мощности от 35 кВт до 2500 кВт размер, вес и стоимость соответствующего трехфазного асинхронного двигателя очень высоки. Следовательно, предпочтительно использовать эти двигатели. Экс- поршневой насос, компрессор, прокатные станы и т. Д.
Принцип работы синхронного двигателя
Электродвигатель — электромеханическое устройство, преобразующее электрическую энергию в механическую.
В зависимости от типа подключения электродвигатели обычно подразделяются на два типа: однофазный двигатель и трехфазный двигатель.
Синхронный двигатель — это трехфазный двигатель, очень похожий на трехфазный генератор переменного тока.
3-фазный синхронный двигатель и 3-фазный асинхронный двигатель являются наиболее широко используемыми двигателями переменного тока.
Синхронный двигатель также называется двигателем с двойным возбуждением.
Синхронный двигатель состоит из двух частей:
Статор : Статор — это обмотка якоря. Он состоит из трехфазной обмотки, соединенной звездой или треугольником, и возбуждается трехфазным источником переменного тока.
Ротор: Ротор — обмотка возбуждения. Обмотка возбуждения возбуждается отдельным источником постоянного тока через контактное кольцо. Конструкция ротора может быть явнополюсного (выступающий полюс) и невыпадающего полюса (цилиндрический полюс).
Принцип работы синхронного двигателя
Синхронный двигатель работает по принципу магнитной блокировки .
Когда два сильно различающихся полюса магнитов соединяются вместе, между этими двумя полюсами возникает огромная сила извлечения. В таком состоянии два магнита называются магнитно заблокированными .
Если теперь повернуть один из двух магнитов, другие магниты также будут вращаться в том же направлении с той же скоростью из-за сильной силы притяжения.
Это явление называется магнитным замком
Для условия магнитной блокировки должно быть два противоположных полюса, и магнитные оси этих двух полюсов должны быть очень близко друг к другу.
Рассмотрим синхронный двигатель, статор которого намотан на 2 полюса.
Обмотка статора возбуждается трехфазным питанием переменного тока, а обмотка ротора — постоянным током соответственно. Таким образом, в синхронном двигателе создаются два магнитных поля.
Когда трехфазная обмотка питается от трехфазного переменного тока, создается вращающееся магнитное поле или магнитный поток.
Это магнитное поле или поток вращается в пространстве со скоростью, называемой синхронной скоростью.
Вращающееся магнитное поле или вращающийся поток имеет фиксированное соотношение между количеством полюсов, частотой переменного тока и скоростью вращения.
Вращающееся магнитное поле создает эффект, подобный физическому вращению магнитов в пространстве с синхронной скоростью.
Так для вращающегося магнитного поля
Где f = частота питания P = Количество полюсов
Действие синхронного двигателя
Предположим, что полюса статора Н 1 и S 1 , которые вращаются со скоростью Н с , а направление вращения — по часовой стрелке.
Когда обмотка возбуждения на роторе возбуждается источником постоянного тока, она создает два неподвижных полюса, то есть N 2 и S 2 .
Чтобы установить магнитную блокировку между полюсами статора и ротора, в отличие от полюсов N1 и S2 или N2 и S1 следует приблизить друг к другу.
Поскольку полюса статора вращаются и из-за магнитной блокировки полюса ротора будут вращаться в том же направлении вращающегося магнитного поля, что и полюса статора, с той же скоростью Н s .
Следовательно, синхронный двигатель вращается только с одной скоростью, которая составляет , синхронная скорость .
Синхронная скорость зависит от частоты, поэтому при постоянной частоте питания скорость синхронного двигателя будет постоянной независимо от измененной нагрузки.
Характеристики синхронного двигателя
Он работает либо с синхронной скоростью, либо совсем не работает. То есть при беге поддерживает постоянную скорость. Скорость не зависит от нагрузки.
Он не запускается автоматически. Он должен каким-то образом работать с синхронной скоростью, прежде чем его можно будет синхронизировать с питанием.
Может работать в широком диапазоне коэффициентов мощности как с запаздыванием, так и с опережением.
Он остановится, если во время работы противодействующий крутящий момент превысит максимальный крутящий момент, который может развить машина.
Скорость синхронного двигателя может регулироваться инверторными блоками.
Применение синхронного двигателя.
Синхронный двигатель находит различное применение для следующих услуг:
Коррекция коэффициента мощности
Регулировка напряжения
Постоянная скорость, приводы с постоянной нагрузкой
Коррекция коэффициента мощности
Синхронный двигатель с избыточным возбуждением, имеющий ведущий коэффициент мощности, широко используется для повышения коэффициента мощности в тех энергосистемах, в которых используется большое количество асинхронных двигателей.
Синхронный двигатель с пониженным коэффициентом мощности с пониженным коэффициентом мощности, находящийся под возбуждением, нашел применение при сварке люминесцентным светом и т. Д.
Регулирование напряжения
Напряжение на длинных линиях передачи сильно меняется при наличии большой индуктивной нагрузки.
Когда линейное напряжение уменьшается из-за индуктивной нагрузки, возбуждение двигателя увеличивается, тем самым повышая его коэффициент мощности, который компенсирует падение напряжения в сети.
Если линейное напряжение повышается из-за емкостного эффекта линии, возбуждение двигателя уменьшается, что приводит к запаздыванию его коэффициента мощности, что помогает поддерживать линейное напряжение на его нормальном значении.
Применение постоянной скорости
Благодаря своему высокому КПД и высокоскоростному синхронному двигателю они хорошо подходят для нагрузок, где требуется постоянная скорость, таких как центробежный насос, воздуходувки, линейный вал, бумажные фабрики и т. Д.
Электродвигатель
— Принципы работы трехфазного двигателя — Роторный, полевой, магнитный и синхронный
Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока.Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается.Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3600 об / мин.
В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а по сути являются короткозамкнутыми. Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних животных песчанок .Когда двигатель первоначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, распространяющееся с синхронной скоростью. Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться.Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован. Асинхронный двигатель имеет высокий пусковой момент.
В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.
Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей. В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока.Беличья клетка не действует на синхронных скоростях по причине, описанной выше.
Однофазные асинхронные и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсатором , пуском или заштрихованными полюсами. Синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. Д., Основаны на схемах сопротивления или гистерезиса.
Синхронные двигатели
: определение, принцип работы, типы и применение
Двигатели и генераторы — незаменимые части электрической системы, которые мы используем либо в таких отраслях, как электростанции, либо в быту. Потребность в электрических системах, производящих большую энергию и потребляющих меньше энергии, видна в изобретении новых моделей этих электрических устройств.Один из многих видов двигателей, которые пришли нам на помощь в последние десятилетия, — это синхронные двигатели.
В этой статье Linquip мы намерены представить этот двигатель, его принцип работы, основные компоненты и поговорить о его различных типах. Мы знаем, что многие из вас собираются купить такой, поэтому мы поговорим о различных областях применения этого двигателя. Читайте дальше, чтобы получить ответы на свои вопросы по этой теме.
Вначале мы подготовили для вас простое определение синхронных двигателей, которое поможет вам войти в следующие разделы. Давай начнем!
Что такое синхронный двигатель?
Синхронный двигатель — это двигатель переменного тока, в котором скорость вращения вала совпадает с частотой приложенного тока. Другими словами, принцип работы синхронного двигателя такой же, как у двигателя переменного тока, но с той разницей, что общее количество оборотов, совершаемых валом в синхронном режиме, равно целому числу, кратному частоте приложенного тока.
Синхронный двигатель не зависит от индукционного тока для своей работы.В этом типе двигателя, в отличие от асинхронных двигателей, на статоре есть многофазные электромагниты переменного тока, которые создают вращающееся магнитное поле. В синхронном режиме ротор состоит из постоянного магнита, который синхронизируется с вращающимся магнитным полем и вращается синхронно с частотой приложенного к нему тока.
В следующих двух разделах вы познакомитесь с конструкцией этого типа двигателя и узнаете, как именно он работает. Пожалуйста, продолжайте читать.
Подробнее о Linquip
Все о типах двигателей постоянного тока и их применении Шунтирующие двигатели постоянного тока
: понятное объяснение принципа работы и компонентов
Как устроен синхронный двигатель?
Как и многие другие двигатели, статор и ротор являются двумя основными компонентами синхронного двигателя.Рама статора синхронного двигателя имеет защитную пластину, к которой прикреплены шпоночные стержни и периферийные ребра. Для поддержки машины используются опоры или рамы, а также контактные кольца и щетки для возбуждения обмоток возбуждения постоянным током.
В синхронном двигателе используются цилиндрические и круглые роторы для 6-полюсных применений. Когда требуется большее количество полюсов, лучше всего использовать роторы с явными полюсами. Конструкция синхронного двигателя такая же, как и у синхронного генератора переменного тока.
Как работает синхронный двигатель?
Взаимодействие между магнитным полем статора и магнитным полем ротора. Подача трехфазного питания Статор двигателя с трехфазными обмотками. Таким образом, обмотка статора создает вращающееся магнитное поле, имеющее 3 фазы. Как мы упоминали ранее, источник постоянного тока для ротора.
Вращающееся магнитное поле, создаваемое обмоткой статора, находится там, где ротор входит и вращается синхронно.Теперь вам более ясно, что скорость двигателя зависит от частоты подаваемого тока. Фактически, скорость синхронного двигателя контролируется частотой приложенного тока.
Обобщая сказанное выше, трехфазная обмотка статора синхронного двигателя пропускает трехфазный ток и создает трехфазный вращающийся магнитный поток. С другой стороны, ротор также питается постоянным током и производит постоянный магнитный поток. Если учесть, что у нас частота сети 50 Гц, из приведенного выше соотношения мы можем увидеть, что трехфазный вращающийся поток вращается примерно на 3000 оборотов всего за одну минуту или 50 оборотов всего за 1 секунду.
В некоторых случаях бывает, что полюса ротора и статора имеют одинаковую полярность (N-N или S-S). Это вызывает отталкивающую силу на роторе. Эта полярность очень скоро станет С-Ю, и она вызовет силу притяжения. Но из-за инерции ротора он не может вращаться в любом направлении из-за этой силы притяжения или отталкивания, и ротор остается в состоянии покоя. Вот почему синхронный двигатель не запускается автоматически.
Итак, вы ознакомились с общей функцией синхронных двигателей.Теперь, когда вы знаете, какова цель этой конструкции и как она работает, давайте посмотрим, сколько у нее типов и чем они отличаются друг от друга.
Различные типы синхронного двигателя
, основанный на методе намагничивания ротора, существует два типа синхронных двигателей:
Двигатель без возбуждения
Двигатель с возбуждением от постоянного тока
Двигатель без возбуждения
В двигателях этого типа ротор намагничивается внешним магнитным полем статора, а ротор имеет постоянное магнитное поле. В этом типе ротора используется сталь с высокой удерживающей способностью, такая как кобальтовая сталь. Это приводит к трем другим классификациям: двигатели с постоянным магнитом, реактивные и гистерезисные двигатели.
В синхронных двигателях с постоянными магнитами наряду со сталью используется постоянный магнит. У них постоянное магнитное поле в роторе, поэтому индукционную обмотку нельзя использовать для запуска. Применяются в качестве безредукторных двигателей лифтов.
Ротор реактивного двигателя выполнен из стального литья с выступающими полюсами.Полюса ротора меньше полюсов статора, чтобы минимизировать пульсации крутящего момента.
Двигатели с гистерезисом — это самозапускающиеся двигатели. В синхронных двигателях этого типа ротор представляет собой гладкий цилиндр, изготовленный из твердой кобальтовой стали. Этот тип двигателя дорог и обычно используется там, где требуется точная постоянная скорость.
Двигатель с возбуждением от постоянного тока
Когда ротор синхронного двигателя возбуждается постоянным током, подаваемым непосредственно через контактные кольца, это называется двигателем с возбуждением постоянным током.
Основные характеристики синхронных двигателей
Первой особенностью синхронных двигателей является то, что скорость не зависит от нагрузки. Это означает, что на скорость двигателя не влияет изменение нагрузки.
Вторая основная особенность заключается в том, что они не запускаются автоматически, и им нужен первичный двигатель, чтобы вращать двигатель с их синхронной скоростью.
И последняя основная характеристика — синхронный двигатель работает как с опережающим, так и с запаздывающим коэффициентом мощности.
Где используется синхронный двигатель?
Синхронные двигатели обычно используются там, где требуется точная и постоянная скорость. Эти двигатели с низким энергопотреблением включают в себя позиционирующие машины. Этот вид электродвигателей также применяется в приводах роботов. В некоторых других приложениях используются синхронные двигатели, такие как шаровые мельницы, часы и проигрыватели виниловых пластинок. Кроме того, эти двигатели также используются в качестве серводвигателей и синхронизаторов.
Подробнее о коллекторных двигателях Linquip
: краткое введение в структуру и принцип работы
Заключение
В этой статье мы попытались показать вам, что именно делает синхронный двигатель.Чтобы вам было понятно, мы проанализировали принцип работы синхронных двигателей и подробно остановились на том, как они работают. Мы объяснили, из каких частей он состоит. После этого мы углубились в разные и основные типы. затем мы достигли различных характеристик и функций. Наконец, мы рассказали вам о его приложениях и о том, где он чаще всего используется.
Если у вас есть опыт использования разных типов синхронной передачи, мы будем очень рады услышать ваше мнение в комментариях. Кстати, если у вас есть какие-либо вопросы по этой теме и вы все еще не уверены в этом устройстве, вы можете зарегистрироваться на нашем веб-сайте и дождаться, пока наши специалисты по Linquip ответят на ваши вопросы.Надеюсь, вам понравилась эта статья.
Двигатели переменного тока
| Принцип работы | Ресурсы для инженеров
Универсальные моторы
Универсальный двигатель — это однофазный последовательный двигатель, который может работать как от переменного (ac), так и от постоянного (dc) тока, а характеристики одинаковы как для переменного, так и для постоянного тока. Обмотки возбуждения последовательных двигателей соединены последовательно с обмотками якоря
. Основные принципы Universal Motors
Областями электрического проектирования универсального двигателя являются магнитная цепь, обмотки возбуждения и якоря, коммутатор и щетки, изоляция и система охлаждения.
Процесс коммутации универсальных двигателей
Тактико-технические характеристики универсальных двигателей
Двигатели с экранированными полюсами
Двигатель с экранированными полюсами — это однофазный асинхронный двигатель переменного тока. Вспомогательная обмотка, состоящая из медного кольца, называется затеняющей катушкой. Ток в этой катушке задерживает фазу магнитного потока в этой части полюса, чтобы обеспечить вращающееся магнитное поле. Направление вращения — от незатененной стороны к закрашенному кольцу.
Основные принципы двигателя с экранированными полюсами
Это устройство затеняющей катушки (кольца) смещает ось затененных полюсов от оси основных полюсов
Когда питание подается на статор, магнитный поток в основной части полюса индуцирует напряжение в затеняющей катушке, которая действует как вторичная обмотка трансформатора.
Поскольку ток во вторичной обмотке трансформатора не совпадает по фазе с током в первичной обмотке.
Ток в затеняющей катушке не в фазе с током в основной обмотке возбуждения.
Таким образом, поток затеняющего полюса не совпадает по фазе с потоком основного полюса.
Вращающееся поле двигателя с экранированными полюсами
Двигатели синхронные
Синхронные двигатели переменного тока — это электродвигатели с постоянной скоростью, которые работают синхронно с частотой сети. Скорость синхронного двигателя определяется количеством пар полюсов и всегда является отношением частоты сети.
Статор снабжен двумя простыми катушками, которые можно напрямую подключить к сети.
Ротор состоит из цилиндрического постоянного двухполюсного магнита, диаметрально намагниченного.
Основные принципы синхронных двигателей
Синхронный двигатель — производство и работа
Синхронный двигатель и асинхронный двигатель — наиболее широко используемые типы двигателей переменного тока. Конструкция синхронного двигателя аналогична генератору переменного тока. Та же самая синхронная машина может использоваться как синхронный двигатель или как генератор переменного тока.Синхронные двигатели доступны в широком диапазоне, обычно мощностью от 150 кВт до 15 МВт со скоростью от 150 до 1800 об / мин.
Конструкция синхронного двигателя
Конструкция синхронного двигателя (с явнополюсным ротором) показана на рисунке слева. Как и любой другой двигатель, он состоит из статора и ротора. Сердечник статора изготовлен из тонкой кремниевой пластинки и изолирован поверхностным покрытием, чтобы минимизировать потери на вихревые токи и гистерезис.Внутри статора имеются осевые пазы, в которых размещена трехфазная обмотка статора. На статор намотана трехфазная обмотка на определенное количество полюсов, равное полюсам ротора.
Ротор синхронных двигателей в основном является явнополюсным. Питание постоянного тока на обмотку ротора подается через контактные кольца. Постоянный ток возбуждает обмотку ротора и создает электромагнитные полюса. В некоторых случаях также можно использовать постоянные магниты. На рисунке выше очень кратко проиллюстрирована конструкция синхронного двигателя .
Работа синхронного двигателя
Статор намотан на такое же количество полюсов, что и ротор, и питается от трехфазного источника переменного тока. Трехфазный источник переменного тока создает вращающееся магнитное поле в статоре. Обмотка ротора питается от источника постоянного тока, который намагничивает ротор. Рассмотрим двухполюсную синхронную машину , как показано на рисунке ниже.
Теперь полюса статора вращаются с синхронной скоростью (скажем, по часовой стрелке). Если положение ротора таково, что полюс N ротора находится рядом с полюсом N статора (как показано на первой схеме на рисунке выше), то полюса статора и ротора будут отталкиваться друг от друга, и создаваемый крутящий момент будет против часовой стрелки .
Полюса статора вращаются с синхронной скоростью, они вращаются очень быстро и меняют свое положение. Но очень скоро ротор не сможет вращаться на тот же угол (из-за инерции), и следующая позиция, вероятно, будет второй схемой на приведенном выше рисунке. В этом случае полюса статора будут притягивать полюса ротора, и крутящий момент будет вращаться по часовой стрелке.
Следовательно, на ротор будет действовать быстро меняющийся крутящий момент, и двигатель не запустится.
Но если ротор вращается до синхронной скорости статора с помощью внешней силы (в направлении вращающегося поля статора), и поле ротора возбуждается около синхронной скорости, полюса статора будут продолжать притягиваться. противоположные полюса ротора (поскольку ротор теперь также вращается вместе с ним, и положение полюсов будет одинаковым на протяжении всего цикла). Теперь ротор будет испытывать однонаправленный крутящий момент. Противоположные полюса статора и ротора заблокируются друг с другом, и ротор будет вращаться с синхронной скоростью.
Характерные особенности синхронного двигателя
Синхронный двигатель будет работать либо с синхронной скоростью, либо не будет работать вообще.
Единственный способ изменить его скорость — это изменить частоту питающей сети. (Поскольку Ns = 120f / P)
Синхронные двигатели не запускаются автоматически. Им нужна некоторая внешняя сила, чтобы приблизить их к синхронной скорости.
Могут работать с любым коэффициентом мощности, как с отставанием, так и с опережением. Следовательно, синхронные двигатели могут использоваться для улучшения коэффициента мощности.
Применение синхронного двигателя
Поскольку синхронный двигатель может работать как с опережающим, так и с запаздывающим коэффициентом мощности, его можно использовать для улучшения коэффициента мощности. Синхронный двигатель без нагрузки с опережающим коэффициентом мощности подключается к энергосистеме, в которой нельзя использовать статические конденсаторы.