Синхронный и асинхронный двигатель разница: Отличие синхронного от асинхронного двигателя

Чем отличается синхронный двигатель от асинхронного для чайников кратко, простыми словами, сравнение по конструкции и принципу действия

Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вам электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.

В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.

Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.

У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.

Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм).

Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Принцип работы

Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Читайте также:

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

Плюсы:

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.

Минусы:

  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь эля этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

Рассмотрим, из чего состоит асинхронный двигатель:

  • сердечник;
  • вентилятор с корпусом;
  • подшипник;
  • коробка с клеммами;
  • тройная обмотка;
  • контактные кольца.

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

Читайте также:

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

Простыми словами, принцип действия можно разложить на несколько составляющих:

  1. При подаче напряжения в статоре создается магнитное поле.
  2. В роторе появляется ток, взаимодействующий с ЭДС статора.
  3. Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

  • стиральных машинках;
  • вентиляторе;
  • вытяжке;
  • бетономешалках;
  • газонокосилках и т. д.

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

  • компрессоры;
  • вентиляция;
  • насосы;
  • задвижки автоматического типа;
  • краны и лебедки;
  • станки для обработки дерева и т. д.

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.

Преимущества:

  1. Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
  2. Более низкая стоимость, по сравнению с синхронным аналогом.
  3. Возможность прямого пуска.
  4. Низкое потребление энергии, что делает двигатель более экономичным.
  5. Высокая степень надежности, благодаря упрощенной конструкции.
  6. Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
  7. Возможность применения при подключении к одной фазе.
  8. Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
  9. Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения.
    При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.

Недостатки:

  1. Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
  2. Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
  3. Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
  4. Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
  5. Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
  6. Трудности регулирования устройств, которые приводятся в движение «синхронниками».
  7. Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
  8. При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
  9. Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.

Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.

Читайте также:

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

Асинхронные и синхронные электродвигатели | Статьи компании «Мир Привода»

Главным назначением данных агрегатов является преобразование электрической энергии в механическую, что позволяет задействовать массу различных механизмов и устройств.

Чтобы понять, чем отличается синхронный электродвигатель от асинхронного аналога, нужно иметь определенное представление о работе агрегатов. В основе лежит создание индукции магнитных полюсов посредством вращающегося ротора и неподвижного статора. Датчик положения ротора посылает все необходимые данные для регуляции в соответствии с фазами напряжения.

Главное различие асинхронных и синхронных электродвигателей заключается в устройстве ротора, который представляет собой постоянный или электрический магнит, а если быть точнее — в принципе создания полюсов:

  • при помощи индукции;
  • при помощи катушек или постоянных магнитов.

Преимущества и недостатки синхронных и асинхронных электродвигателей переменного тока:

  • Синхронные модели — высокая надёжность и КПД, стабильная частота вращения, не зависящая от нагрузки, простота обслуживания. Минусом можно считать некоторую сложность запуска двигателя, а также необходимость питания обмотки постоянным током. В моделях некоторых производителей часто выходят из строя коллекторы и щётки.
  • Асинхронные аналоги — низкое потребление энергии, простота конструкции, эксплуатация в бытовых приборах с использованием однофазного подключения. Главный минус заключается в больших тепловых потерях и сложности регулировки.

Конструктивные особенности

Стоит обратить внимание на конструктивные отличия синхронного электродвигателя и асинхронного двигателя.

В состав синхронной конструкции, которая используется и как двигатель, и как генератор, входят следующие детали:

  • подшипниковый узел;
  • сердечник;
  • магниты, индуктор и якорь с обмоткой;
  • втулка;
  • стальная тарелка.

Стоит добавить, что некоторые новые модели обладают короткозамкнутой пусковой обмоткой, которая позволяет запускать агрегат в асинхронном режиме.

Асинхронные аналоги бывают двух типов (с короткозамкнутым и фазным ротором) и состоят из следующих деталей:

  • сердечника и магнитопровода;
  • вентилятора с кожухом;
  • подшипника;
  • клеммной коробки и тройной обмотки;
  • контактных колец.

Данная разновидность обладает большей популярностью, поскольку позволяет регулировать частоту вращения вала с помощью реостатов.

принципы работы и различия в характеристиках

Электродвигатели — машины, превращающие энергию электричества в механическую. Преобразованная энергия приводит во вращательное движение ротор двигателя, передающий вращение через трансмиссию непосредственно на вал исполнительного механизма. Основными типами электродвигателей являются синхронный и асинхронный двигатели. Различия между ними определяют возможности использования в различных устройствах и технологических процессах.

Принципы работы

Все электродвигатели имеют неподвижный статор и вращающийся ротор. Разница между асинхронным и синхронным двигателями состоит в принципах создания полюсов. В асинхронном электродвигателе они создаются явлением индукции. Во всех других электродвигателях используются постоянные магниты или катушки с током, создающие магнитное поле.

Особенности синхронных двигателей

Ведущие агрегаты синхронной машины — якорь и индуктор. Якорем является статор, а индуктор располагается на роторе. Под действием переменного тока в якоре образуется вращающееся магнитное поле. Оно сцепляется с магнитным полем индуктора, образованным полюсами постоянных магнитов или катушек с постоянным током. В результате этого взаимодействия энергия электричества преобразуется в кинетическую энергию вращения.

Ротор синхронной машины имеет частоту вращения такую же, как у поля статора. Достоинства синхронных электродвигателей:

  • Конструктивно используется и как двигатель, и как генератор.
  • Частота вращения, не зависящая от нагрузки.
  • Большой коэффициент полезного действия.
  • Малая трудоёмкость в ремонте и обслуживании.
  • Высокая степень надёжности.

Синхронные машины широко используются как электродвигатели большой мощности для небольшой скорости вращения и постоянной нагрузки. Генераторы применяются там, где требуется автономный источник питания.

Имеются у синхронной машины и недостатки:

  • Требуется источник постоянного тока для питания индуктора.
  • Отсутствует начальный пусковой момент, для запуска требуется применение внешнего момента или асинхронного пуска.
  • Щётки и коллекторы быстро выходят из строя.

Современные синхронные агрегаты содержат в индукторе дополнительно к обмотке, питаемой постоянным током, ещё и пусковую короткозамкнутую обмотку, которая предназначена для пуска в асинхронном режиме.

Отличительные черты асинхронных двигателей

Вращающееся магнитное поле статора асинхронного двигателя наводит индукционные токи в роторе, которые образуют собственное магнитное поле. Взаимодействие полей приводит ротор во вращение. Частота вращения ротора при этом отстаёт от частоты вращения магнитного поля. Именно это свойство отражено в названии двигателя.

Асинхронные электродвигатели бывают двух типов: с короткозамкнутым и с фазным ротором.

Бытовые приборы, такие как вентилятор или пылесос, обычно снабжены двигателями с короткозамкнутым ротором, который представляет собой «беличье колесо». Все стержни замыкаются приваренными с обеих сторон дисками. Взаимодействие магнитного поля статора с наведёнными токами в роторе образовывает электромагнитную силу, которая действует на ротор в направлении вращения поля статора. Крутящий момент на валу электродвигателя создаётся всеми электромагнитными силами от каждого проводника.

В электродвигателе с фазным ротором применяется тот же статор, что и для мотора с короткозамкнутым ротором. А в ротор добавляются обмотки трёх фаз, соединённые в «звезду». К ним можно при пуске двигателя подключать реостаты, регулирующие пусковые токи. С помощью реостатов можно регулировать и частоту вращения двигателя.

Достоинствами асинхронных двигателей можно назвать:

  • Питание непосредственно от сетей переменного тока.
  • Простоту устройства и сравнительно невысокую стоимость.
  • Возможность использования в бытовых приборах с применением однофазного подключения.
  • Низкое потребление энергии и экономичность.

Серьёзные недостатки — сложная регулировка частоты вращения и большие теплопотери. Для предотвращения перегрева корпус агрегата делается ребристым, и на вал электродвигателя устанавливается крыльчатка для охлаждения.

Отличие в характеристиках электродвигателей

Конструктивные особенности и рабочие характеристики электродвигателей имеют решающее значение при выборе агрегатов. От этого зависит проектирование трансмиссий и всех силовых узлов механизмов. При выборе двигателя нужно опираться на общность и главные отличия в свойствах машин:

  • Главное отличие синхронного от асинхронного двигателя заключается в конструкции ротора. Он представляет собой постоянный или электрический магнит. У асинхронника магнитные поля в роторе наводятся с помощью электромагнитной индукции.
  • У синхронных двигателей частота вращения вала постоянна, у асинхронников она может изменяться при изменении нагрузки.
  • У синхронников отсутствует пусковой момент. Для входа в синхронизацию требуется применять асинхронный пуск.

Синхронный и асинхронный электродвигатели находят каждый своё применение. Синхронные двигатели рекомендуется использовать везде при высоких мощностях, где присутствует непрерывный производственный процесс и не нужно часто перезапускать агрегаты или регулировать частоту вращения. Они используются в конвейерах, прокатных станах, компрессорах, камнедробилках и т. д. Современный синхронный электродвигатель имеет такой же быстрый запуск, как и асинхронный, но он меньше и экономичнее, чем асинхронный, равный по мощности.

Асинхронные электродвигатели с фазным ротором применяются там, где нужен большой пусковой момент и частые остановки агрегатов. Например, в лифтах и башенных кранах. Асинхронные электродвигатели с короткозамкнутым ротором получили широкое применение из-за простоты устройства и удобства в эксплуатации.

Используя достоинства разных агрегатов и то, чем отличается синхронный двигатель от асинхронного, можно делать обоснованный выбор того или иного мотора при проектировании машин, станков и другого оборудования.

Чем отличается синхронный двигатель от асинхронного

Электродвигатели бывают двух основных типов — синхронные и асинхронные. Что представляют собой те и другие?

Что представляет собой синхронный двигатель?

К синхронным принято относить электродвигатели, которые функционируют на переменном токе и имеют ротор с частотой вращения, совпадающей с частотой оборотов магнитного поля в конструкции агрегата.

Ключевые элементы синхронного электродвигателя:

  1. якорь;
  2. индуктор.

Первый элемент агрегата располагается на статоре. Индуктор размещается на роторе, который отделен от статора воздушной прослойкой. Структура якоря представлена обмоткой (одной или несколькими). Токи, которые подаются в соответствующий элемент двигателя, формируют магнитное поле, вращающееся с заданной частотой и взаимодействующее с полем индуктора. Индуктор включает 2 полюса — в виде постоянных магнитов.

Синхронный агрегат может функционировать в двух режимах:

  • как собственно электродвигатель;
  • как генератор.

Первый режим работы предполагает взаимодействие магнитного поля, формирующегося на якоре, и поля, которое образуется на полюсах индуктора. Синхронный двигатель в режиме генератора функционирует за счет электромагнитной индукции: в процессе вращения ротора магнитное поле, которое формируется на обмотке, по очереди взаимодействует с фазами обмотки на статоре, вследствие чего образуется электродвижущая сила.

к содержанию ↑

Что представляет собой асинхронный электродвигатель?

К асинхронным принято относить электродвигатели, в которых частота вращения одного из ключевых элементов — ротора — не совпадает с частотой оборотов магнитного поля, формирующегося током, который возникает на обмотке статора. Асинхронные агрегаты иногда именуются индукционными. Это обусловлено тем, что в обмотке ротора осуществляется индуцирование тока при воздействии магнитного поля статора.

В конструкции асинхронного электродвигателя присутствуют статор и ротор, которые разделены воздушной прослойкой. Основные активные элементы агрегата:

  • обмотка;
  • магнитопровод.

Важную роль в функционировании асинхронного двигателя играют дополнительные конструктивные элементы, которые обеспечивают прочность, охлаждение и устойчивость работы агрегата.

к содержанию ↑

Сравнение

Главное отличие синхронного двигателя от асинхронного заключается в соотношении величины частот вращения ротора и магнитного поля. В агрегате первого типа оба показателя одинаковые. В асинхронной машине — разные.

Можно отметить, что электродвигатели второго типа в целом более распространены, чем первые. При этом асинхронные агрегаты чаще всего представлены в разновидности, в которой инсталлирован короткозамкнутый ротор. Данные устройства имеют ряд важнейших преимуществ перед электродвигателями иных категорий. А именно:

  1. простота конструкции, надежность;
  2. относительно невысокая себестоимость производства, эксплуатации;
  3. способность функционирования при задействовании имеющихся ресурсов сети без подключения преобразователей.

Вместе с тем асинхронные машины с короткозамкнутым ротором обладают и рядом недостатков. А именно:

  • наличие малого пускового момента;
  • наличие большого пускового тока;
  • пониженный коэффициент мощности;
  • низкая управляемость с точки зрения регулирования скорости;
  • зависимость максимальной скорости от частоты электрической сети;
  • электромагнитный момент в асинхронных двигателях рассматриваемого типа характеризуется сильной чувствительностью к снижению напряжения в сети.

В свою очередь, у синхронных агрегатов также есть неоспоримые достоинства. К таковым можно отнести:

  • относительно невысокую чувствительность к перепадам напряжения в сети;
  • стабильность вращения вне зависимости от нагрузки на ротор.

Есть у синхронных двигателей и недостатки:

  • относительная сложность конструкции;
  • сложность запуска ротора в ход.

Отмеченные особенности работы синхронных и асинхронных агрегатов делают оптимальным использование первых в случае, если требуемая мощность двигателя в системе (например, как части инфраструктуры фабричной линии) должна составлять порядка 100 кВт и более. В остальных случаях задействование асинхронных машин, как правило, становится более предпочтительным.

Рассмотрев, в чем разница между синхронным и асинхронным двигателем, отразим выводы в таблице.

к содержанию ↑

Таблица

Синхронный двигательАсинхронный двигатель
Вращение ротора и магнитного поля в синхронных двигателях осуществляется с одинаковой частотойВращение ротора и магнитного поля в асинхронных агрегатах осуществляется с разной частотой
Имеет часто более сложную конструкциюОбычно имеет менее сложную конструкцию
Оптимален при необходимой мощности в 100 кВт и вышеОптимален при необходимой мощности менее 100 кВт

Разница между синхронным и асинхронным двигателем

Разница между синхронным и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требование к контактному кольцу и щеткам, их стоимость, эффективность, коэффициент мощности, токоподвод, скорость, самозапуск, влияние на крутящий момент, поскольку изменения напряжения, их рабочей скорости и различных применений синхронного и асинхронного двигателя. Советуем вам сайт компании zemchic.ru, перейдя по ссылке далее https://zemchic.ru/item/instrument_obmotchika_remontnika вы сможете купить инструменты обмотчика-ремонтника по выгодной цене!

Различия между синхронным и асинхронным двигателем описаны ниже в табличной форме.

ОСНОВАСИНХРОННЫЙ МОТОРАСИНХРОННЫЙ МОТОР
ОпределениеСинхронный двигатель — это машина, скорость вращения которой и скорость магнитного поля статора равны. 
N = NS = 120f / P
Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей синхронной. 
N <NS
ТипБесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с переключаемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями.Асинхронный двигатель переменного тока известен как асинхронный двигатель.
слипНе имеет скольжения. Значение скольжения равно нулю.Имейте скольжение, поэтому значение скольжения не равно нулю.
Дополнительный источник питанияТребуется дополнительный источник питания постоянного тока для первоначального вращения ротора вблизи синхронной скорости.Не требует никакого дополнительного исходного источника.
Кольцо скольжения и щеткиТребуется скользящее кольцо и щеткиКольцо скольжения и щетки не требуются.
СтоимостьСинхронный двигатель является дорогостоящим по сравнению с асинхронным двигателемДешевле
КПДКПД выше, чем у асинхронного двигателя.Менее эффективны
Фактор силыИзменяя возбуждение, коэффициент мощности можно соответственно отрегулировать как отставание, опережение или единица.Асинхронный двигатель работает только с запаздывающим коэффициентом мощности.
Ток питанияТок подается на ротор синхронного двигателяРотор асинхронного двигателя не требует тока.
скоростьСкорость двигателя не зависит от изменения нагрузки. Это постоянно.Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
Самостоятельный запускСинхронный двигатель не запускается самостоятельноЭто само начало
Влияние крутящего моментаИзменение приложенного напряжения не влияет на крутящий момент синхронного двигателяИзменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
Рабочая скоростьОни работают плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин.Выше 600 об / мин скорость работы двигателя превосходна.
ПриложенияСинхронные двигатели используются на электростанциях, в обрабатывающей промышленности и т. Д., А также в качестве регулятора напряжения.Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках.  так далее

Синхронный двигатель — это двигатель, который работает с синхронной скоростью, то есть скорость вращения ротора равна частоте вращения статора двигателя. Это следует соотношению N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор асинхронного двигателя вращается со скоростью меньше, чем синхронная скорость, т.е. N <N S

Подробное объяснение разницы между синхронным и асинхронным двигателем приведено ниже.

  • Синхронный двигатель — это машина, скорость вращения которой и скорость магнитного поля статора равны. Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей синхронной.
  • Бесщеточный двигатель, двигатель с переменным сопротивлением, двигатель с переключаемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
  • Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет проскальзывание, поэтому величина проскальзывания не равна нулю.
  • Синхронный двигатель требует дополнительного источника питания постоянного тока, чтобы первоначально вращать ротор близко к синхронной скорости. Асинхронный двигатель не требует дополнительного источника запуска.
  • Кольцо скольжения и щетки требуются в синхронном двигателе, тогда как асинхронный двигатель не требует кольца скольжения и щеток. Только для асинхронного двигателя намоточного типа требуются контактное кольцо и щетки.
  • Синхронный двигатель является дорогостоящим по сравнению с асинхронным двигателем.
  • КПД синхронного двигателя выше, чем асинхронного двигателя.
  • Изменяя возбуждение, коэффициент мощности Синхронного двигателя можно соответствующим образом отрегулировать как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с запаздывающим коэффициентом мощности.
  • Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
  • Скорость Синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
  • Синхронный двигатель не запускается самостоятельно, тогда как асинхронный запускается самостоятельно.
  • Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, тогда как оно влияет на крутящий момент асинхронного двигателя.
  • Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин. Асинхронный двигатель работает превосходно. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и подъемниках. так далее
  • Различные применения Синхронного двигателя заключаются в том, что он используется на электростанциях, в обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.
Предыдущая статьяЛандшафтный дизайн по доступным ценам предлагает компания «ТОПИАР»Следующая статьяПастеризованное и гомогенизированное молоко: в чем разница?

Разница между синхронным и асинхронным двигателем — Разница Между

Разница Между 2021

Ключевая разница: Синхронные двигатели и асинхронные двигатели являются наиболее широко используемыми типами двигателей переменного тока. В синхронном электродвигателе вращение вала синхронизировано с

Содержание:

Ключевая разница: Синхронные двигатели и асинхронные двигатели являются наиболее широко используемыми типами двигателей переменного тока. В синхронном электродвигателе вращение вала синхронизировано с частотой питающего тока. Асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе создается электромагнитной индукцией от магнитного поля обмотки статора.

Синхронные и асинхронные двигатели — это два разных типа электродвигателей переменного тока. Электродвигатели переменного тока — это электродвигатели, приводимые в действие переменным током (AC). Двигатель переменного тока обычно состоит из двух основных частей: внешнего стационарного статора и внутреннего ротора. Синхронные двигатели и асинхронные двигатели являются наиболее широко используемыми типами двигателей переменного тока.

Внешний стационарный статор имеет катушки, которые питаются переменным током. Это тогда производит вращающееся магнитное поле. Внутренний ротор прикреплен к выходному валу, который создает второе вращающееся магнитное поле. Магнитное поле ротора может создаваться постоянными магнитами, магнитной индуктивностью или электрическими обмотками постоянного или переменного тока.

В синхронном электродвигателе вращение вала синхронизировано с частотой питающего тока. Период вращения точно равен целому числу циклов переменного тока. Синхронные двигатели содержат многофазные электромагниты переменного тока на статоре двигателя. Эти электромагниты создают магнитное поле, которое вращается во времени вместе с колебаниями тока в линии. С другой стороны, ротор с постоянными магнитами или электромагнитами вращается в соответствии с полем статора с той же скоростью. Это обеспечивает второе синхронизированное вращающееся магнитное поле.

Асинхронный двигатель — это электродвигатель переменного тока, в котором электрический ток в роторе создается электромагнитной индукцией от магнитного поля обмотки статора. Асинхронный двигатель также известен как асинхронный двигатель. Ротор в асинхронном двигателе может быть намотанного или короткозамкнутого типа.

В отличие от больших синхронных двигателей, асинхронный двигатель не требует механической коммутации, раздельного возбуждения или самовозбуждения для энергии, передаваемой от статора к ротору.

Основное различие между синхронными и асинхронными двигателями состоит в том, что синхронный двигатель вращается в точной синхронизации с частотой линии. Кроме того, синхронный двигатель не зависит от индукции тока для создания магнитного поля ротора. Асинхронный двигатель, с другой стороны, требует «проскальзывания», чтобы вызвать ток в обмотке ротора, что означает, что ротор должен вращаться немного медленнее, чем чередование переменного тока.

Сравнение между синхронным и асинхронным двигателем:

Синхронный двигатель

Индукционный двигатель

Описание

Синхронный электродвигатель представляет собой электродвигатель переменного тока, в котором в установившемся режиме вращение вала синхронизировано с частотой тока питания.

Асинхронный или асинхронный двигатель представляет собой электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается посредством электромагнитной индукции от магнитного поля обмотки статора.

содержать

Многофазные электромагниты переменного тока на статоре двигателя

Синхронная скорость

Работать на оборотах = 120f / p

Работать на скорости менее синхронной (об / мин = 120f / p — скольжение)

Постоянное возбуждение

Синхронные двигатели требуют подачи постоянного тока на обмотки ротора

Асинхронные двигатели не требуют подачи постоянного тока на обмотки ротора.

Источник постоянного тока

Синхронные двигатели требуют источника питания постоянного тока для возбуждения ротора.

Асинхронные двигатели не требуют источника питания постоянного тока для возбуждения ротора.

Роторное возбуждение

Синхронные двигатели требуют контактных колец и щеток для подачи возбуждения ротора.

Асинхронные двигатели не требуют контактных колец, но некоторые асинхронные двигатели имеют их для плавного пуска или управления скоростью.

Обмотки ротора

Синхронные двигатели требуют обмотки ротора

Асинхронные двигатели чаще всего изготавливаются с токопроводящими стержнями в роторе, которые замыкаются вместе на концах, образуя «беличную клетку».

Пусковой механизм

Синхронные двигатели требуют запуска механизма в дополнение к режиму работы, который действует, когда они достигают синхронной скорости.

Трехфазные асинхронные двигатели могут запускаться простым подачей питания, но однофазные двигатели требуют дополнительной цепи запуска.

Фактор силы

Коэффициент мощности синхронного двигателя можно отрегулировать так, чтобы он отставал от единицы или опережал

Асинхронные двигатели всегда должны работать с запаздывающим коэффициентом мощности.

КПД

Синхронные двигатели обычно более эффективны, чем асинхронные двигатели.

Асинхронные двигатели, как правило, менее эффективны, чем синхронные двигатели.

слип

Синхронные двигатели могут быть сконструированы с постоянными магнитами в роторе, исключая контактные кольца, обмотки ротора, систему возбуждения постоянного тока и возможность регулировки коэффициента мощности.

Асинхронные двигатели содержат скольжение.

Размер

Синхронные двигатели обычно изготавливаются только с размерами, превышающими 1000 л.с. (750 кВт), из-за их стоимости и сложности. Однако синхронные двигатели с постоянными магнитами и постоянные синхронные двигатели с электронным управлением, называемые бесщеточными двигателями постоянного тока, доступны в меньших размерах.

Меньшие асинхронные двигатели построены и обычно в домашних условиях.

Используется в

Применения синхронизации, такие как синхронные часы, таймеры в приборах, магнитофоны и точные сервомеханизмы

Трехфазные асинхронные двигатели с короткозамкнутым ротором широко используются в промышленных приводах, потому что они прочные, надежные и экономичные. Однофазные асинхронные двигатели широко используются для небольших нагрузок, таких как бытовая техника, например, вентиляторы.

Чем асинхронные электродвигатели отличаются от синхронных

Самые распространённые электродвигатели — трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.

Принцип действия и устройство электромашин разных типов


Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

  • Корпус с подшипниковыми щитами и лапами или фланцем.
  • В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
  • Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор. В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

 

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.


Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

Номинальная величи

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.


Принцип действия синхронных электродвигателей


Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.

Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.


Запуск электродвигателей

Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.


Пуск асинхронных двигателей большой мощности

Для запуска таких машин используются разные способы:

  • Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
  • В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
  • В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
  • При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.

Пуск синхронных электромашин

В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.


  • С помощью дополнительного асинхронного двигателя. Так запускаются машины с постоянными магнитами в роторе. При достижении скорости, близкой к синхронной, асинхронхронник отключается и подаётся напряжение в статор синхронного двигателя.
  • Асинхронный пуск. В роторе, кроме электромагнита, находится «беличья клетка». С её помощью аппарат разгоняется, после чего в обмотку подаётся постоянное напряжение, и двигатель начинает работать в качестве синхронного.
  • Обмотки ротора закорачиваются напрямую или через добавочное сопротивление. После разгона в них подаётся постоянное напряжение.
  • При помощи ТПЧ (тиристорного преобразователя частоты) частота питающего напряжения и скорость вращения плавно поднимается до номинальной. Этот способ применяется в механизмах с регулировкой скорости.

Особенности и применение разных  видов электродвигателей

У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.


Достоинства и использование асинхронных электродвигателей

Такие машины имеют достоинства перед синхронными аппаратами:

  • простота конструкции и низкая цена; аппараты с фазным ротором позволяют регулировать скорость вращения и осуществлять плавный пуск без использования преобразователей частоты;
  • большое разнообразие мощностей — от нескольких ватт до десятков киловатт.

Кроме достоинств есть недостатки:

  • падение скорости вращения при росте нагрузки;
  • более низкий КПД и большие габариты, чем у синхронных аппаратов той же мощности;
  • кроме активной, такие аппараты потребляют реактивную (индуктивную) мощность, что ведёт к необходимости устанавливать компенсаторы или дополнительно оплачивать реактивную электроэнергию.

Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.


Применение синхронных машин


  • Регулировка путём изменения тока возбуждения cos φ. Это позволяет уменьшить ток потребления, габариты и сечение подводящего кабеля, а также увеличить КПД. Кроме того, такие аппараты используются в качестве компенсаторов реактивной мощности.
  • Менее чувствительны к колебаниям напряжения и обладают большей перегрузочной способностью, особенно к ударным нагрузкам. Способность к превышению мощности повышается путём перевозбуждения обмоток ротора. Благодаря этому такие двигатели используются в экскаваторах, гильотинных ножницах и других подобных механизмах.
  • Частота вращения не меняется при изменения нагрузки. Поэтому синхронные машины применяются в прецизионных станках в металлургии, машиностроении и деревообатывающей промышленности.

Разница между синхронным и асинхронным двигателем (со сравнительной таблицей)

Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требования к контактным кольцам и щеткам, их стоимость, эффективность, коэффициент мощности, источник тока, скорость, самозапуск , влияние на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

Различия между синхронным и асинхронным двигателем объясняются ниже в табличной форме.

Асинхронный двигатель
ОСНОВА СИНХРОННЫЙ ДВИГАТЕЛЬ АСИНХРОННЫЙ ДВИГАТЕЛЬ
Определение Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
N = NS = 120f / P
Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
N
Тип Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. переменного тока известен как асинхронный двигатель.
Скольжение Не имеет проскальзывания. Значение скольжения равно нулю. Есть пробуксовка, поэтому величина пробуксовки не равна нулю.
Дополнительный источник питания Требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Не требует дополнительных пусковых источников.
Контактное кольцо и щетки Требуются контактное кольцо и щетки Контактное кольцо и щетки не требуются.
Стоимость Синхронный двигатель дороже по сравнению с асинхронным двигателем Дешевле
КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
Коэффициент мощности Путем изменения возбуждения коэффициент мощности можно отрегулировать соответственно как запаздывающий, опережающий или единичный. Асинхронный двигатель работает только с отстающим коэффициентом мощности.
Электропитание Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
Самозапуск Синхронный двигатель не самозапускается Самозапускается
Влияние на крутящий момент Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, ниже 300 об / мин. Двигатель работает со скоростью выше 600 об / мин безупречно.
Приложения Синхронные двигатели используются на электростанциях, обрабатывающей промышленности и т. Д. Они также используются в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.

Синхронный двигатель — это двигатель, который работает с синхронной скоростью, то есть скорость ротора равна скорости статора двигателя.Отсюда следует соотношение N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор асинхронного двигателя вращается со скоростью меньше синхронной, т.е. N S

Разница между синхронным и асинхронным двигателем

  1. Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.
  2. Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
  3. Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
  4. Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
  5. Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только асинхронный двигатель с обмоткой требует и контактного кольца, и щеток.
  6. Синхронный двигатель дороже асинхронного двигателя.
  7. КПД синхронного двигателя больше, чем у асинхронного двигателя.
  8. Путем изменения возбуждения коэффициент мощности синхронного двигателя может быть соответственно отрегулирован как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с отстающим коэффициентом мощности.
  9. Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
  10. Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
  11. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель запускается автоматически.
  12. Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, но влияет на крутящий момент асинхронного двигателя.
  13. Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин работа асинхронного двигателя превосходна. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.
  14. Синхронный двигатель используется в различных сферах применения на электростанциях, обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.

Таким образом, синхронный двигатель отличается от асинхронного двигателя.

В чем разница между асинхронными и синхронными двигателями?

Загрузить статью в формате .PDF

Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики электродвигателей. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации двигателя.Среди классических примеров этого явления — асинхронные двигатели и асинхронные двигатели.

Все асинхронные двигатели являются асинхронными двигателями. Асинхронный характер работы асинхронного двигателя происходит из-за скольжения между скоростью вращения поля статора и несколько меньшей скоростью ротора. Более конкретное объяснение того, как возникает это проскальзывание, касается деталей внутреннего устройства двигателя.

Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), известный как беличья клетка.Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе. Твердый сердечник ротора состоит из пакетов пластин электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым кратным пазам статора, чтобы предотвратить магнитную блокировку зубцов ротора и статора при запуске двигателя.

Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора.Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель сначала начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

Неподвижная часть обмоток двигателя называется якорем или статором.Обмотки статора подключаются к источнику переменного тока. Подача напряжения на статор вызывает прохождение тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила генерируется, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда на некоторую величину отстает от поля статора, поэтому он вращается со скоростью, несколько меньшей, чем у статора. Разница между ними называется скольжением.

Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.

Несколько простых уравнений проясняют основные взаимосвязи.

Когда на статор изначально подается переменный ток, ротор неподвижен. Напряжение, индуцируемое в роторе, имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцированного в нем напряжения, f r , падает. Если f — частота напряжения статора, то скольжение, с, связывает эти два через f r = с f .Здесь s выражается в виде десятичной дроби.

Когда ротор неподвижен, ротор и статор фактически образуют трансформатор. Таким образом, напряжение E , индуцированное в роторе, определяется уравнением трансформатора

E = 4,44 f N м

, где Н, = количество проводников под одним полюсом статора (обычно мало для двигателя с короткозамкнутым ротором) и № м = максимальный магнитный поток по Веберсу.Таким образом, напряжение E r , индуцируемое при вращении ротора, зависит от скольжения:

E r = 4,44 s f N Ñ „ m = s E

Описание синхронных двигателей

Синхронный двигатель имеет особую конструкцию ротора, которая позволяет ему вращаться с одинаковой скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением.Однако недавние достижения в схемах управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, нагнетатели и ведущие мосты внедорожных транспортных средств.

В основном синхронные двигатели бывают двух типов:

• Самовозбуждение — использует принципы, аналогичные принципам работы асинхронных двигателей, и

• С прямым возбуждением — обычно с постоянными магнитами, но не всегда

Самовозбуждающийся синхронный двигатель, также называемый реактивным электродвигателем с переключаемым сопротивлением, содержит ротор, отлитый из стали, который имеет выемки или зубья, называемые выступающими полюсами.Это выемки, которые позволяют ротору блокироваться и работать с той же скоростью, что и вращающееся магнитное поле.

Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки / фазы статора аналогично тому, как это происходит в шаговом двигателе. Синхронный двигатель с прямым возбуждением можно называть разными именами. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. В этой конструкции используется ротор, содержащий постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

Постоянные магниты являются основными полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотки статора в нужное время с помощью твердотельных переключателей, сводя к минимуму пульсации крутящего момента. Принцип действия всех этих типов синхронных двигателей в основном одинаков.Электроэнергия подается на катушки, намотанные на зубья статора, которые заставляют значительный магнитный поток пересекать воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если явный полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, часть потока пересекает зазор под углом, не перпендикулярным поверхностям зуба. Результатом является крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

Еще один тип синхронного двигателя называется реактивным электродвигателем с переключаемым сопротивлением (SR).

Его ротор состоит из многослойных стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них щелей. Таким образом, ротор не требует обмоток, редкоземельных материалов или магнитов.

В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.

Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения скорости вращения двигателя.

▷ Синхронные и асинхронные двигатели — где их использовать?

Многие люди часто не понимают, что такое синхронные и асинхронные двигатели, и каковы их области применения. Именно поэтому один из новейших членов сообщества электротехники написал эту статью. Проверьте это ниже:

Следующая информация касается общих принципов работы синхронных и асинхронных двигателей, их преимуществ, а также где они обычно используются и что можно достичь с помощью каждого из этих двигателей.

Давайте сначала сконцентрируемся на их принципах работы…

Синхронные и асинхронные двигатели — принципы работы

Синхронные двигатели

Это типичный электродвигатель переменного тока, способный развивать синхронную скорость. В этих двигателях и статор, и ротор вращаются с одинаковой скоростью, что обеспечивает синхронизацию. Основной принцип работы заключается в том, что когда двигатель подключен к сети, электричество течет в обмотки статора, создавая вращающееся электромагнитное поле.Это, в свою очередь, индуцируется на обмотках ротора, который затем начинает вращаться.

Требуется внешний источник постоянного тока, чтобы синхронизировать направление и положение вращения ротора с направлением вращения статора. В результате такой блокировки двигатель либо должен работать синхронно, либо не вращаться совсем.

Асинхронные двигатели

Принцип работы асинхронных двигателей почти такой же, как и у синхронных двигателей, за исключением того, что к ним не подключен внешний возбудитель. Проще говоря, асинхронные двигатели, также известные как асинхронные двигатели, также работают по принципу электромагнитной индукции, в которых ротор не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.

Единственная загвоздка в том, что в асинхронных двигателях нет внешнего устройства, подключенного для возбуждения ротора, и, следовательно, скорость ротора зависит от переменной магнитной индукции. Это изменяющееся электромагнитное поле заставляет ротор вращаться со скоростью, меньшей, чем скорость магнитного поля статора.Поскольку скорость ротора и скорость магнитного поля статора меняются, эти двигатели известны как асинхронные двигатели. Разница в скорости известна как «проскальзывание».

Синхронные и асинхронные двигатели — преимущества и недостатки

  1. Синхронный двигатель работает с постоянной скоростью и заданной частотой независимо от нагрузки. Но скорость асинхронного двигателя уменьшается с увеличением нагрузки.
  2. Синхронный двигатель может работать в широком диапазоне коэффициентов мощности, как с запаздыванием, так и с опережением, тогда как асинхронный двигатель всегда работает с запаздыванием p.f, который может быть очень низким при уменьшении нагрузок.
  3. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель может запускаться самостоятельно.
  4. На крутящий момент синхронного двигателя не влияют изменения приложенного напряжения, как на асинхронный двигатель.
  5. Для запуска синхронного двигателя требуется внешнее возбуждение постоянного тока, но асинхронный двигатель не требует внешнего возбуждения для работы.
  6. Синхронные двигатели обычно дороги и сложны по сравнению с асинхронными двигателями, которые менее дороги и удобны для пользователя.
  7. Синхронные двигатели особенно хороши для низкоскоростных приводов (ниже 300 об / мин), потому что их коэффициент мощности всегда можно отрегулировать до 1,0, и они очень эффективны. С другой стороны, асинхронные двигатели отлично подходят для скоростей выше 600 об / мин.
  8. В отличие от асинхронных двигателей, синхронные двигатели могут работать на сверхнизких скоростях за счет использования мощных электронных преобразователей, которые генерируют очень низкие частоты. Их можно использовать для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

Синхронные и асинхронные двигатели — приложения

Применение синхронных двигателей
  1. Они обычно используются на электростанциях для достижения соответствующего коэффициента мощности. Они работают параллельно шинам и часто перегружаются извне для достижения желаемого коэффициента мощности.
  2. Они также используются в обрабатывающей промышленности, где используется большое количество асинхронных двигателей и трансформаторов для преодоления запаздывающей p.f.
  3. Используется на электростанциях для выработки электроэнергии с заданной частотой.
  4. Используется для управления напряжением путем изменения его возбуждения в линиях передачи.
Применение асинхронных двигателей

Более 90% двигателей, используемых в мире, являются асинхронными двигателями, и они находят широкое применение в самых разных областях. Некоторые из них:

  1. Центробежные вентиляторы, нагнетатели и насосы
  2. Компрессоры
  3. Конвейеры
  4. Подъемники, а также краны большой грузоподъемности
  5. Станки токарные
  6. Нефтяные, текстильные, бумажные комбинаты и т. Д.
Заключение

В заключение, синхронные двигатели используются только тогда, когда от машины требуются характеристики низкой или сверхнизкой скорости, а также при желаемых коэффициентах мощности (как отстающих, так и опережающих). В то время как асинхронные двигатели преимущественно используются в большинстве вращающихся или движущихся машин, таких как вентиляторы, подъемники, шлифовальные машины и т. Д.

Что вы думаете об этой статье? Вам это помогло?

В чем разница между синхронным и асинхронным двигателем?

Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.

Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.

Синхронный двигатель не имеет скольжения.

В чем разница между синхронным и асинхронным двигателем?

Синхронный двигатель — это машина с двойным возбуждением, тогда как асинхронный двигатель — это машина с одним возбуждением. В случае синхронного двигателя его обмотка якоря питается от источника переменного тока, а его обмотка возбуждения — от источника постоянного тока, тогда как в случае асинхронного двигателя его обмотка статора питается от источника переменного тока.

В чем разница между синхронным и асинхронным генератором?

Как и следовало ожидать из названия, основное различие между асинхронными и синхронными машинами заключается в синхронизме ротора. Когда ротор вращается медленнее, чем синхронная скорость, машина действует как двигатель. Когда ротор вращается быстрее, чем синхронная скорость, машина действует как генератор.

Что такое синхронный двигатель?

Синхронный электродвигатель — это электродвигатель переменного тока, в котором в установившемся режиме вращение вала синхронизируется с частотой питающего тока; период вращения в точности равен целому числу циклов переменного тока.Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.

Что такое синхронная скорость?

В двигателе синхронная скорость — это скорость, с которой вращается магнитное поле. В зависимости от конструкции двигателя фактическая механическая скорость может быть эквивалентной (синхронный двигатель) или немного меньшей (асинхронный двигатель). Синхронная скорость является функцией: используемой электрической частоты, обычно 60 Гц или 50 Гц.

Почему он называется синхронным двигателем?

Следовательно, ротор вращается с той же скоростью, что и вращающееся магнитное поле.Это связано с тем, что двигатель называется синхронным двигателем. Это двигатель с постоянной скоростью, потому что, несмотря на увеличение нагрузки, двигатель работает с той же синхронной скоростью.

Какие типы двигателей?

К наиболее распространенным электродвигателям, используемым сегодня, относятся:

  • Бесщеточные двигатели переменного тока. Бесщеточные двигатели переменного тока — одни из самых популярных в управлении движением.
  • Щеточные двигатели постоянного тока. В щеточном двигателе постоянного тока ориентация щетки на статоре определяет ток.
  • Бесщеточные двигатели постоянного тока.
  • Прямой привод.
  • Линейные двигатели.
  • Серводвигатели.
  • Шаговые двигатели.

Что означает синхронный генератор?

синхронный генератор. [′ Siŋ · krə · nəs ′ jen · ə‚rād · ər] (электричество) Машина, которая генерирует переменное напряжение, когда ее якорь или поле вращаются двигателем, двигателем или другими средствами. Выходная частота точно пропорциональна до скорости, с которой работает генератор.

Почему мы используем синхронный генератор?

Синхронные генераторы являются основным источником коммерческой электроэнергии. Они обычно используются для преобразования механической мощности паровых турбин, газовых турбин, поршневых двигателей и гидротурбин в электрическую энергию для сети. Нагрузка, подаваемая генератором, определяет напряжение.

Как работает синхронный генератор?

Принцип работы синхронного генератора — электромагнитная индукция.Если существует относительное движение между потоком и проводниками, то в проводниках индуцируется ЭДС. Таким образом, теперь можно сказать, что касательное движение проводника перпендикулярно линиям магнитного потока от северного полюса к южному.

Почему возбуждение всегда постоянное?

Для успешной работы генератора он должен выдавать синусоидальное переменное напряжение определенной частоты. Теперь возбуждение постоянным током создает электромагнит фиксированной полярности в поле, которое движется с постоянной скоростью от первичного двигателя.Таким образом, якорь статора создает почти синусоидальный переменный ток.

Каковы преимущества синхронного двигателя?

Преимущество использования синхронного двигателя — возможность контролировать коэффициент мощности. Синхронный двигатель с избыточным возбуждением имеет опережающий коэффициент мощности и работает параллельно с асинхронными двигателями, тем самым улучшая коэффициент мощности системы. Скорость остается постоянной независимо от нагрузки в синхронных двигателях.

Где используется синхронный двигатель?

Обычно синхронные двигатели используются в приложениях, где требуется точная и постоянная скорость.Эти двигатели с малой мощностью применяются в позиционирующих машинах. Они также применяются в приводах роботов. В шаровых мельницах, часах, проигрывателях пластинок также используются синхронные двигатели.

16 Основные различия между синхронным двигателем и асинхронным двигателем

В этом посте мы узнаем разницу между двумя типами двигателей переменного тока (AC). Это два двигателя переменного тока — синхронный двигатель и асинхронный двигатель.

Если вы готовитесь к экзамену, viva или собеседованию, вам будут заданы вопросы, связанные с синхронным и асинхронным двигателем.Это очень важные темы в электротехнике.

Вас часто просят сравнить эти два типа двигателей.

Здесь я сравниваю синхронный двигатель и асинхронный двигатель с их характеристиками, функциями, приложениями и примерами.

Примечание: Асинхронный двигатель называется асинхронным двигателем.

Разница между синхронным и асинхронным двигателями [табличный формат]

Давайте рассмотрим сравнение обоих двигателей переменного тока (синхронного и асинхронного).

Старший № Содержание Синхронный двигатель Асинхронный двигатель
01 Определение Электромагнитный двигатель, который преобразует электрическую энергию в механическую работу с постоянной скоростью , называется синхронным двигателем. Электромагнитный двигатель, который преобразует электрическую энергию в механическую работу с переменной скоростью , называется асинхронным двигателем.
02 Двигатель Скорость Синхронный двигатель работает с синхронной скоростью . Асинхронный двигатель работает с несинхронной скоростью .
03 Принцип Синхронный двигатель работает по принципу «магнитной блокировки ». Асинхронный двигатель работает по принципу « электромагнитной индукции ».
04 Исходное положение Это несамостоятельный двигатель . Это самозапускающийся двигатель. (особенно трехфазный асинхронный двигатель)
05 Подключенное питание

(питание переменного и постоянного тока)

Состоит из двух основных частей — статора и ротора.

Статор подключается к трехфазному источнику переменного тока, а ротор подключается к источнику постоянного тока соответственно.

Точно так же он также состоит из двух основных частей — статора и ротора.

Единственный статор подключается к трехфазному источнику переменного тока.

06 Система возбуждения

(источник постоянного тока для ротора)

Синхронному двигателю требуется система возбуждения постоянного тока (или первичный двигатель) для запуска двигателя (т. Е. Для вращения ротора). Асинхронный двигатель не требует системы возбуждения для запуска двигателя.
07 Строительство Конструкция синхронного двигателя очень сложна. Конструкция асинхронного двигателя относительно проста.
08 Относительное движение Для синхронного двигателя относительное движение между статором и ротором не требуется. Для асинхронного двигателя требуется относительное движение между статором и ротором.
09 Клинья

(Разница между скоростью вращения магнитного поля и скоростью ротора)

Проскальзывание нуля (S = 0) происходит в синхронном двигателе. Различное скольжение происходит в асинхронном двигателе.
10

Скорость двигателя

(об / мин)

Он работает со скоростью от 150 до 1800 об / мин. синхронной скорости. Он работает со скоростью менее 1500 об / мин. синхронная скорость.
11 Коэффициент мощности Он имеет единиц или с запаздыванием или с опережающим коэффициентом мощности .

В основном работает на единичном коэффициенте мощности.

Он имеет только , отстающий коэффициент мощности .
12 Эффективность

(отношение выходной мощности к входной)

Синхронный двигатель имеет более высокий КПД мощности благодаря единичному или опережающему коэффициенту мощности. Асинхронный двигатель менее эффективен, чем синхронный двигатель.
13 Использует Используется для коррекции коэффициента мощности, обслуживания нагрузки с постоянной скоростью, регулирования напряжения линии передачи и т. Д. В основном используется в промышленности.
14 Стоимость Этот двигатель на дороже на , чем асинхронный двигатель. Этот двигатель на дешевле синхронного двигателя на .
15 Техническое обслуживание Требуется максимум обслуживания. Требуется минимум обслуживания.
16 Пример Вентилятор, нагнетательный вентилятор, сушилка — пример синхронного двигателя. Конвейерная лента, прокатный стан, смеситель, измельчитель — это пример асинхронного двигателя.

В трубчатой ​​форме я рассмотрел большинство тем, связанных с разницей между синхронным и асинхронным двигателем. Надеюсь, это поможет вам при подготовке к экзамену или собеседованию.

Сравнения по теме:

Если у вас есть какие-либо вопросы, напишите мне в разделе комментариев ниже.

Спасибо за чтение!

Если вы цените то, что я делаю здесь, в DipsLab, вам следует принять во внимание:

DipsLab — это самый быстрорастущий и пользующийся наибольшим доверием сайт сообщества инженеров по электротехнике и электронике.Все опубликованные статьи доступны БЕСПЛАТНО всем.

Если вам нравится то, что вы читаете, пожалуйста, купите мне кофе (или 2) в знак признательности.

Это поможет мне продолжать оказывать услуги и оплачивать счета.

Я благодарен за вашу бесконечную поддержку.

Я получил степень магистра в области электроэнергетики. Я работаю и пишу технические руководства по ПЛК, программированию MATLAB и электричеству на DipsLab.com портал.

Я счастлив, поделившись своими знаниями в этом блоге. А иногда вникаю в программирование на Python.

Конструкция, работа, различия и применение

В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также асинхронным двигателем с их применением. Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем.Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.

Что такое асинхронный двигатель?

Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора.В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора. В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.


Асинхронный двигатель

Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена.Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера. полюсов.

Конструкция асинхронного двигателя

В этой конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение.Потому что магнитное поле ротора может быть создано за счет магнитного поля статора. Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени. Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».

Конструкция асинхронного двигателя

Работа асинхронного двигателя

Принцип работы этого двигателя почти такой же, как и у синхронного двигателя, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.У этих двигателей нет внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.

Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.


Разница между синхронным и асинхронным двигателем

Разница между синхронным и асинхронным двигателем приведена в следующей таблице.

Функция Синхронный двигатель

Асинхронный двигатель

Определение Это один из видов машин, в котором скорость ротора и статора скорость эквивалентна.

N = NS = 120f / P

Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью.

Н меньше NS

Тип Типы синхронных: переменное сопротивление, бесщеточный, гистерезисное и переключаемое сопротивление. Асинхронный двигатель переменного тока также известен как асинхронный двигатель.
Скольжение Значение скольжения этого двигателя равно нулю Значение скольжения этого двигателя не равно нулю
Стоимость Это дорого Это дешевле
КПД Высокоэффективный Низкий КПД
Скорость Скорость двигателя не зависит от неравенства нагрузки. Скорость двигателя уменьшается при увеличении нагрузки.
Электропитание Электропитание может подаваться на ротор в двигателе Ротор в этом двигателе не нуждается в токе.
Самозапуск Этот двигатель не самозапускается Этот двигатель самозапускается
Влияние крутящего момента Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя Как только поданное напряжение изменится, это повлияет на крутящий момент этого двигателя.
Коэффициент мощности Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. Работает просто с отстающим коэффициентом мощности.
Применения Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве контроллера напряжения. Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, подъемниках, компрессорах и текстильные фабрики и т. д.

Преимущества

Асинхронный двигатель имеет следующие преимущества.

  • Меньше затрат
  • Простота обслуживания
  • Высокая эффективность при работе с частичной нагрузкой
  • Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER

Применения

Большая часть двигатели, используемые в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.

  • Центробежные насосы
  • Воздуходувки
  • Вентиляторы
  • Конвейеры
  • Компрессоры
  • Тяжелые краны
  • Лифты
  • Токарные станки
  • Бумажные мельницы
  • Масляные мельницы
  • Почему асинхронный двигатель еще называют асинхронным двигателем?

    Асинхронный двигатель зависит от индуцированного тока внутри ротора от вращающегося магнитного поля в статоре.

    2). Какие бывают типы асинхронных двигателей?

    Это однофазные и трехфазные двигатели

    3). В чем главная особенность асинхронного двигателя?

    Основной особенностью этого двигателя является то, что скорость не может изменяться.

    4). Каков коэффициент мощности асинхронного двигателя?

    Этот мотор работает просто на отстающей п.ф.

    Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?

    Разница между синхронным двигателем и асинхронным двигателем

    Двигатели переменного тока

    делятся на два типа: синхронные двигатели и асинхронные двигатели, которые также называются асинхронными двигателями. Самая большая разница между синхронными двигателями и асинхронными двигателями (асинхронными двигателями) заключается в том, соответствует ли скорость ротора скорости вращающегося магнитного поля в статоре.Если скорость вращения ротора и скорость возбуждения статора одинаковы, это называется синхронным двигателем; в противном случае это асинхронный двигатель. Кроме того, между ними есть большие различия в параметрах производительности и приложениях.

    Различия в конструкции
    Обмотки статора синхронных и асинхронных двигателей похожи, и основное различие заключается в конструкции ротора. В роторе синхронного двигателя имеются обмотки возбуждения постоянного тока, на которые необходимо подавать внешнюю мощность возбуждения, вводимую через контактное кольцо.Однако в обмотках ротора асинхронного двигателя имеется короткое замыкание, которое производит ток за счет электромагнитной индукции. Напротив, синхронные двигатели более сложны и дороги.

    • Статор
      Компоненты статора синхронного двигателя в основном такие же, как и у асинхронных двигателей, они принимают, выводят электрическую энергию и создают вращающееся магнитное поле. По форме результата особой разницы нет. Статоры синхронного и асинхронного двигателей состоят из магнитного сердечника статора, проводящих трехфазных обмоток переменного тока, основания для фиксирующего сердечника, крышки зажимов и т. Д.
    • Ротор
      Синхронный двигатель: полюсный сердечник ротора покрыт стальными листами, в которые вставлены стальные пластины. На полюсный сердечник надевают обмотки возбуждения, намотанные изолированными медными проводами. Для синхронного двигателя с постоянными магнитами постоянный магнит на роторе является ключевым фактором, отличающим его от других двигателей.
      Асинхронный двигатель: ротор состоит из стального сердечника и обмоток, он изготовлен из ламинированных стальных листов и установлен на вращающемся валу.Ротор бывает двух типов: с короткозамкнутым ротором и намотанный. Асинхронный двигатель с обмоткой также оснащен контактным кольцом и щеточным механизмом.

    Разница в работе
    1. Синхронный двигатель
    Синхронный двигатель вращается во взаимодействии между вращающимся магнитным полем, создаваемым обмотками статора при включении питания, и магнитным полем, создаваемым ротором. В синхронном двигателе с постоянными магнитами он вращается за счет крутящего момента, создаваемого взаимодействием между вращающимся магнитным полем статора и вторичным магнитным полем ротора.Что касается обмотки ротора, то она не наводит ток при нормальном вращении двигателя, а также не участвует в работе. Он служит только для запуска мотора.
    Во время установившейся работы синхронного двигателя существует постоянная зависимость между скоростью вращения ротора и частотой сети:
    N = Ns = 120f / p
    f — частота сети, p — число полюсов двигателя, Ns — синхронная скорость.
    2. Асинхронный двигатель
    Сердечник статора трехфазного асинхронного двигателя заделан трехфазными симметричными обмотками.После включения между статором и ротором возникает вращающееся магнитное поле, которое вращается с синхронной скоростью. Стержень ротора разрезается вращающимся магнитным полем, в котором возникает индуцированный ток. На стержень включенного ротора воздействует электромагнитная сила во вращающемся магнитном поле, таким образом, ротор преодолевает вращение момента нагрузки и ускоряет свое вращение. Когда электромагнитный момент равен моменту нагрузки, двигатель вращается с постоянной скоростью.
    Скорость вращения асинхронного двигателя (скорость статора) ниже, чем скорость вращения магнитного поля, и эта разница называется «скольжением» и выражается в процентах от синхронной скорости:
    S = (Ns-N) / Ns.
    S — скольжение, Ns — скорость магнитного поля, N — скорость ротора.

    Разница в применении
    Синхронные двигатели в основном используются в больших генераторах, в то время как асинхронные двигатели почти используются в качестве двигателей для привода машин.
    Для синхронного двигателя коэффициент мощности можно гибко регулировать возбуждением. Однако коэффициент мощности асинхронного двигателя не регулируется, поэтому на некоторых крупных заводах для более применяемых асинхронных двигателей можно добавить синхронный двигатель в качестве модификатора фазы, чтобы отрегулировать коэффициенты мощности завода и интерфейса сети.Однако из-за высокой стоимости синхронных двигателей и большого объема технического обслуживания в настоящее время обычно используются конденсаторы для компенсации коэффициента мощности.
    Синхронный двигатель работает не так просто, как асинхронный двигатель, потому что синхронный двигатель имеет обмотку возбуждения и контактное кольцо, требующие высокоуровневого управления возбуждением. Кроме того, по сравнению с необслуживаемым асинхронным двигателем, работа по обслуживанию синхронного двигателя велика. Поэтому в качестве двигателя чаще всего выбирают асинхронный двигатель.

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены. Карта сайта